PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New perspectives of analog and digital simulations of fractional order systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the recent decades, fractional order systems have been found to be useful in many areas of physics and engineering. Hence, their efficient and accurate analog and digital simulations and numerical calculations have become very important especially in the fields of fractional control, fractional signal processing and fractional system identification. In this article, new analog and digital simulations and numerical calculations perspectives of fractional systems are considered. The main feature of this work is the introduction of an adjustable fractional order structure of the fractional integrator to facilitate and improve the simulations of the fractional order systems as well as the numerical resolution of the linear fractional order differential equations. First, the basic ideas of the proposed adjustable fractional order structure of the fractional integrator are presented. Then, the analog and digital simulations techniques of the fractional order systems and the numerical resolution of the linear fractional order differential equation are exposed. Illustrative examples of each step of this work are presented to show the effectiveness and the efficiency of the proposed fractional order systems analog and digital simulations and implementations techniques
Rocznik
Strony
91--118
Opis fizyczny
Bibliogr. 36 poz., rys., wykr., wzory
Twórcy
autor
  • Laboratoire de Traitement du Signal Département d’Electronique, Université des Frères Mentouri - Constantine, Route Ain El-bey, Constantine 25011, Algeria
autor
  • Laboratoire de Traitement du Signal Département d’Electronique, Université des Frères Mentouri - Constantine, Route Ain El-bey, Constantine 25011, Algeria
autor
  • Department d'Electronice, Universite Labri Ben M'Hidi Oum El Bouaghi 04000, Algeria
autor
  • Universite Grenoble Alpes, CNRS, Gipsa-lab, F-38000 Grenoble, France
Bibliografia
  • [1] M. Aoun, R. Malti, F. Levron and A. Oustaloup: Numerical simulations of fractional systems: An overview of existing methods and improvements. Nonlinear Dynamics, 38 (2004), 117-131.
  • [2] D. Baleanu, J. A. T Machado and A. C. J. Luo (eds.): Fractional Dynamics and Control. Springer-Verlag, New York, 2012.
  • [3] D. Boucherma, A. Charef, H. Nezzari: The solution of state space linear fractional system of commensurate order with complex eigenvalues using regular exponential and trigonometric functions. Int. J. of Dynamics and Control, 5(1), (2017), 79-94.
  • [4] A. Charef: Modeling and analog realization of the fundamental linear fractional order differential equation. Nonlinear Dynamics, 46 (2006), 195-210.
  • [5] A. Charef and H. Nezzari: On the fundamental linear fractional order differential Eequation. Nonlinear Dynamics, 65 (2011), 335-348.
  • [6] A. Charef: Analogue realization of fractional order integrator, differentiator and fractional PIλDμ controller. IEE Proc. on Control Theory and Applications, 153 (2006), 714-720.
  • [7] A. Charef and D. Iidiou: Design of analog variable fractional order differentiator and integrator. Nonlinear Dynamics, 69 (2012), 1577-1588.
  • [8] A. Charef, H. H. Sun, Y. Y. Tsao and B. Onaral: Fractal system as represented by singularity function. IEEE Trans. on Automatic Control, 37 (1992), 1465-1470.
  • [9] Y. Q. Chen and B. M. Vinagre: A new IIR-type digital fractional order differentiator. Signal Processing, 83 (2003), 2359-2365.
  • [10] M. Dalir and M. Bashour: Applications of fractional calculus. Applied Mathematical Sciences, 4 (2010), 1021-1032.
  • [11] S. K. Damarla and M. Kundu: Numerical solution of multi order fractional differential equations using generalized triangular function operational matrices. Applied Mathematics and Computation, 263 (2015), 189-203.
  • [12] S. Das and I. Pan (EDS.): Fractional Order Signal Processing: Introductory Concepts and Applications. Springer, New York, 2012.
  • [13] A. Djouambi, A. Charef and T. Bouktir: Fractional order robust control and PIλDμ controllers. WSEAS Trans. on Circuits and Systems, 8 (2005), 850-857.
  • [14] R. Garra and F. Polito: Analytic solutions of fractional differential equations by operational methods. Applied Mathematics and Computation, 218 (2012), 10642-10646.
  • [15] K. Hamdaoui and A. Charef: A new discretization method for fractional order differentiators via bilinear transformation. 15th Int. Conf. on Digital Signal Processing, (2007), 280-283.
  • [16] Y. Hu, Y. Luo and Z. Lu: Analytical solution of the linear fractional differential equation by Adomian decomposition method. J. of Computational and Applied Mathematics, 215 (2008), 220-229.
  • [17] C. X. Jiang, J. E. Carletta, T. T Hartley and R. J. Veillette: A systematic approach for implementing fractional-order operators and systems. IEEE J. on Emerging and Selected Topics in Circuits and Systems, 3 (2013), 301-312.
  • [18] T. Kaczorek: Realization problem for fractional continuous time systems. Archives of Control Sciences, 18(1), (2008), 43-58.
  • [19] M. M. Khader: A new fractional Chebyshev FDM: an application for solving the fractional differential equations generated by optimization problem. Int. J. of Systems Science, 46 (2015), 2598-2606.
  • [20] S. Kumar, K. Singh and R. Saxena: Closed-form analytical expression of fractional order differentiation in fractional Fourier transform domain. Circuits, Systems, and Signal Processing, 32 (2012), 1875-1889.
  • [21] C. Li, Y. Li, A. Chen and J. Ye: Numerical approaches to fractional calculus and fractional ordinary differential equation. J. of Computational Physics, 230 (2011), 3352-3368.
  • [22] X. Li: Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method. Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 3934-3946.
  • [23] R. L. Magin: Fractional calculus in bioengineering. Begell House, Redding, 2006.
  • [24] A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue and V. Fellin: Fractionalorder Systems and Controls Fundamentals and Applications. Springer, London, 2010.
  • [25] Z. M. Obidat: Analytic study on linear systems of fractional differential equations. Computers and Mathematics with Applications, 59 (2010), 1171-1183.
  • [26] K. Ogata: Discrete-time control systems. Prentice Hall. Englewood Cliffs, 1987.
  • [27] K. Oprzedkiewicz: Approximation method for a fractional order transfer function with zero and pole. Archives of Control Sciences, 24(4), (2014), 447-463.
  • [28] G. Oturanc, A. Kurnaz and Y. Keskin: A new analytical approximate method for the solution of fractional differential equations. Int. J. of Computer Mathematics, 85 (2008), 131-142.
  • [29] A. Oustaloup: La Commande CRONE, Editions Hermés, Paris, 1991.
  • [30] F. Padula and A. Vasioli: Advances in Robust Fractional Control. Springer, New York, 2015.
  • [31] I. Petras: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer-Verlag, Berlin, 2011.
  • [32] A. Saadatmandia and M. Dehghanb: A new operational matrix for solving fractional order differential equations. Computers and Mathematics with Applications, 59 (2010), 1326-1336.
  • [33] J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado(eds.): Advances in Fractional Calculus: Theoretical Development and Applications in Physics and Engineering. Springer, Dordrecht, 2007.
  • [34] H. Sheng, Y. Q. Chen and T. S Qju: Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications. Springer-Verlag, Berlin, 2012.
  • [35] M. P. Tripathi, V. K. Barnaval, R. K. Pandey and O. P. Singh: A new numerical algorithm to solve fractional differential equations based on operational matrix of generalized hat functions. Communications in Nonlinear Science and Numerical Simulation, 18 (2013), 1327-1340.
  • [36] C. C. Tseng: Design of FIR and IIR fractional order Simpson digital integrators. Signal Processing, 87 (2007), 1045-1057.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c21ef2b-ca87-42e7-877e-a22823c3ab43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.