PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multiscale entropy applications for complexity analysis of two-phase flow

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two-phase flow in channels of small dimensions is often a non-stationary process, the nature of such flow is oscillatory. Due to small channel dimensions, high heat flux, parallel channels interactions, pressure and temperature oscillations, the character of the phenomena occurring during boiling is complex. The changes of the measured signals are observed in different time scales. In order to examine in detail two-phase flow parameters changes, many acquisition devices are often installed. This solution becomes challenging concerning mini and microchannel heat-exchangers due to space limitation and modifications of an experimental setup. This paper presents a novel application of multiscale entropies for spatial and temporal analysis of two-phase flow based on only one registered parameter. This analysis is performed based on pixel brightness changes in photo frames registered by a high speed camera during two-phase flow. The spatial changes of pixel brightness are observed on single frames and temporal changes are examined using a set of frames (in time). The Composite Multiscale Sample Entropy is applied to identify two-phase flow patterns and to analyze the complexity of phase distribution. Using Multivariate Multiscale Sample Entropy the most rapid changes of phase distribution in a multichannel heat exchanger are determined.
Rocznik
Strony
83--90
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
  • Bialystok University of Technology, Faculty of Mechanical Engineering, Wiejska 45A, Bialystok 15-351, Poland
  • Bialystok University of Technology, Faculty of Mechanical Engineering, Wiejska 45A, Bialystok 15-351, Poland
  • Bialystok University of Technology, Faculty of Mechanical Engineering, Wiejska 45A, Bialystok 15-351, Poland
  • Bialystok University of Technology, Faculty of Mechanical Engineering, Wiejska 45A, Bialystok 15-351, Poland
  • Bialystok University of Technology, Faculty of Mechanical Engineering, Wiejska 45A, Bialystok 15-351, Poland
Bibliografia
  • [1] Fabila-Carrasco, J.S., Tan, C., & Escudero, J. (2022). A noiserobust Multivariate Multiscale Permutation Entropy for twophase flow characterisation. The University of Edinburgh. Edinburg Research Explorer. doi: 10.48550/arxiv.2210.09030
  • [2] Gao, Z.-K., Ding, M.-S., Geng, H., & Jin, N.-D. (2015). Multivariate multiscale entropy analysis of horizontal oil–water twophase flow. Physica A, 417, 7–17. doi: 10.1016/j.physa.2014.09.017
  • [3] Górski, G., Litak, G., Mosdorf, R., & Rysak, A. (2019). Periodic Trends in Two-Phase Flow Through a Vertical Minichannel: Wavelet and Multiscale Entropy Analyses Based on Digital Camera Data. Acta Mechanica et Automatica, 13(1), 51–56. doi:10.2478/ama-2019-0008
  • [4] Ren, W., Zhang, J., & Jin, N. (2021). Rescaled range permutation entropy: A method for quantifying the dynamical complexity of gas–liquid two-phase slug flow. Nonlinear Dynamics, 104(4),4035–4043. doi: 10.1007/s11071-021-06468-2
  • [5] Han, Y.-F., Jin, N.-D., Zhai, L.-S., Ren, Y.-Y., & He, Y.-S. (2019). An investigation of oil–water two-phase flow instability using multivariate multi-scale weighted permutation entropy. Physica A: Statistical Mechanics and Its Applications, 518, 131–144. doi: 10.1016/j.physa.2018.11.053
  • [6] Costa, M., Peng, C.-K., L. Goldberger, A., & Hausdorff, J.M. (2003). Multiscale entropy analysis of human gait dynamics. Physica A: Statistical Mechanics and Its Applications, 330(1),53–60. doi: 10.1016/j.physa.2003.08.022
  • [7] Li, Z., & Zhang, Y.-K. (2008). Multi-scale entropy analysis of Mississippi River flow. Stochastic Environmental Research and Risk Assessment, 22(4), 507–512. doi: 10.1007/s00477-007-0161-y
  • [8] Zhang, N., Lin, A., Ma, H., Shang, P., & Yang, P. (2018). Weighted multivariate composite multiscale sample entropy analysis for the complexity of nonlinear times series. Physica A: Statistical Mechanics and Its Applications, 508, 595–607. doi:10.1016/ j.physa. 2018.05.085
  • [9] Ahmed, M.U., & Mandic, D.P. (2012). Multivariate Multiscale Entropy Analysis. IEEE Signal Processing Letters, 19(2), 91–94.doi: 10.1109/LSP.2011.2180713
  • [10] Clark, M.D., Weibel, J.A., & Garimella, S.V. (2023). Impact of pressure drop oscillations and parallel channel instabilities on microchannel flow boiling and critical heat flux. International Journal of Multiphase Flow, 161, 104380. doi: 10.1016/j.ijmultiphaseflow.2023.104380
  • [11] Zhu, L., Jhia Ooi, Z., Zhang, T., Brooks, C.S., & Pan, L. (2023). Identification of flow regimes in boiling flow with clustering algorithms: An interpretable machine-learning perspective. Applied Thermal Engineering, 228, 120493. doi: 10.1016/j.applthermaleng.2023.120493
  • [12] Rafałko, G., Mosdorf, R., & Górski, G. (2020). Two-phase flow pattern identification in minichannels using image correlation analysis. International Communications in Heat and Mass Transfer, 113,104508. doi: 10.1016/j.icheatmasstransfer.2020.104508
  • [13] Rafałko, G.S. (2023). Application of image analysis to identify and investigate the dynamics of two-phase flow patterns: PhD thesis, Bialystok University of Technology. https://biblioteka.pb.edu.pl/spisy/2023/206140.djvu [accessed 09 Feb. 2024].
  • [14] Costa, M., Goldberger, A.L., & Peng, C.K. (2005). Multiscale entropy analysis of biological signals. Physical Review E, 71(2),021906. doi: 10.1103/PhysRevE.71.021906
  • [15] Richman, J.S., & Moorman, J.R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology,278(6), H2039–H2049. doi: 10.1152/ajpheart.2000.278.6.H2039
  • [16] Rafałko, G., Mosdorf, R., Litak, G., & Górski, G. (2020). Complexity of phase distribution in two-phase flow using composite multiscale entropy. European Physical Journal Plus, 135(8). doi:10.1140/epjp/s13360-020-00686-0
  • [17] Rafałko, G., Grzybowski, H., Dzienis, P., Mosdorf, R., & Adamowicz, A. (2021). Image Analysis of Flow Maldistribution during Boiling in Parallel Minichannels. Chemical Engineering and Technology,44(11), 1978–1985. doi: 10.1002/ceat.202100246
  • [18] Dario, E.R., Tadrist, L., & Passos, J.C. (2013). Review on twophase flow distribution in parallel channels with macro and micro hydraulic diameters: Main results, analyses, trends. Applied Thermal Engineering, 59(1), 316–335. doi: 10.1016/j.applthermaleng.2013.04.060
  • [19] Ha, M.Y., Kim, C.H., Jung, Y.W., & Heo, S.G. (2006). Two-Phase Flow Analysis in Multi-Channel. Journal of Mechanical Science and Technology, 20(6), 840–848. doi: 10.1007/ BF02915947
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c20cba8-bef7-4e9b-996e-b7d23a2f114f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.