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Abstract 
The Volumetric Capnography (VC) is the plot of amounts of expired CO2 
within one tidal breath. The estimation of physiologic parameters derived from 
the VC is useful in the study of respiratory physiology, clinical anesthesia and 
critical care medicine. In this work we propose the use of a function based on 
a Takagi-Sugeno fuzzy model and a functional approximation based on the 
Levenberg-Marquardt algorithm to approximate the VC, with the goal to 
compute two variables of interest: the airway dead space (VDaw) and the slope of 
the so-called Phase III (SIII). These models presented a good performance 
in those capnograms that showed difficulties to be modeled with traditional 
medical analysis. 
Key words: volumetric capnography, Takagi-Sugeno Fuzzy Inference Systems, 

functional modeling. 

1 Introduction 

The Volumetric Capnography (VC) is a plot of the CO2 elimination vs. the 
expired volume. The estimation of derived physiologic parameters of VC is 
relevant in the study of respiratory physiology, clinical anesthesia and critical 
care medicine [7, 9] The shape of the VC provides important clinical informa-
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tion because it is characteristically modified by chronic diseases such as 
chronic obstructive pulmonary disease (COPD) or emphysema, and acute 
events such as pulmonary embolism and asthma.  
Most approaches to studying VC curves are based on their geometrical analy-
sis. Ward S. Fowler, who is one of the first researchers in the field, originally 
applied his method by hand, a subjective technique to be used at the bedside 
[4]. Different researchers have adapted Fowler’s method and they have de-
scribed other techniques for VC analysis to be implemented in computational 
algorithms in order to make VC useful in the clinical field [3, 11]. One key 
target of all techniques is the adequate determination of the position of several 
significant points in the VC. Such points are very sensitive to changes in the 
morphology of the curve and they are susceptible to the acquisition noise. 

The purpose of this study is to find an adequate functional approximation 
of the VC, from which specific points of interest can then be accurately and 
dynamically computed. 

We present three models based on Takagi-Sugeno fuzzy techniques [1, 13] 
and a fourth model which is a functional approximation by means of the Le-
venberg-Marquardt algorithm [10].  

The functional approximation of each VC is obtained from a fuzzy archi-
tecture, achieving less susceptibility to noise, and obtaining more accuracy in 
determining points of interest in hard VCs, comparing with the results of the 
traditional medical analysis. 

1.1 Volumetric Capnogram Analysis 

A typical VC curve is shown in Fig.1, where three phases are observed. 
Phase I is the portion of the tidal volume free of CO2 at the beginning of expi-
ration. Phase II consists of a rapid S-shaped rise, being the result of mixing of 
dead-space gas and alveolar gas. Finally, Phase III (alveolar plateau) 
represents the CO2-rich gas coming from the alveoli. 

 

 
Figure 1. Phases of VC 
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Most approaches for parameterization of the VC curves are based on geo-
metric analysis. The pursued goal is the adequate determination of the “air-
way-alveolar” interface position (AII); i.e. the boundary between the airway 
dead-space (VDaw) and alveolar tidal volume (VTalv) regions. This interface sets 
the boundary between convective and diffusive transport of CO2 within the 
lungs [2]. The precise definition of the AII is mandatory for the accurate com-
putation of the VC derived variables [10]. Besides, another important derived 
variable from VC is the slope of Phase III (SIII), because this slope depends 
directly on the distribution of ventilation and perfusion within the lungs.  

2 Methods  

The Fowler and functional approximation methods were applied to obtain 
the values of derived variables of VC defined in section 1.1. 

2.1 Fowler’s method 

The Fowler method consists of the following sequential steps (Fig. 2): 
First, SIII is computed by linear regression using a fixed portion of the VC data 
between 40 and 80% of the expired volume. Secondly, the position of AII is 
searched by iteratively moving a vertical line between the start of phase II and 
its boundary towards the right so that in the end, the areas “p” and “q” became 
equal. VDaw is the absisa value (volume) at the point AII.  

 

 
Figure 2. Fowler “equal area” method (p = q) 
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2.2 Functional approximation methods 

Four models are proposed to generate analytic functions in order to fit each 
VC data (fVC). The first model, FA-LMA (Functional Approximation with 
Levenberg-Marquardt algorithm) is an optimization of a function created ad-
hoc for this problem [6] (see Appendix A). The other three models are based 
on first order Takagi-Sugeno Fuzzy Inference Systems (TS) (see Appendix B) 
[8]. For each TS model the rules are generated in three different ways: 
- by grouping the input-output data using subtractive clustering [12]. Sym-

metrical Gaussian functions are used as membership functions (M1). 
- by using subtractive clustering, and then optimized with an ANFIS model 

(Adaptive Neuro-Fuzzy Inference System) [5, 6]. The membership func-
tions are defined as the product of two sigmoid functions (M2). These 
functions have four parameters to be adjusted. 

- by using grid partition method, and then optimized with an ANFIS mod-
el (M3). The same membership functions as in the M2 model are used.  

 
In the M1 model the membership function is: 
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where c and σ are the parameters of a gaussian function. The gaussian func-
tions were selected because of their smoothness, given that they were more 
adequate to model the cuasi-sigmoidal VC shape. 

To increment the freedom degrees when adapting with the ANFIS model 
we propose the use of the product of two gaussian as membership function 
that shows four parameters to be adjusted. 
In the M2 and M3  models the membership function is:  
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α and c are the parameters of a sigmoid function. 
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The ANFIS model architecture is:  

 
 
Where µi are the membership functions. 
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The training method of the ANFIS is a combination of least-squares esti-

mation with the backpropagation algorithm. 
Once the analytic function fVC is obtained, the derived variables are calcu-

lated. The point AII is mathematically determined as the inflection point of the 
whole fVC , being VDaw the absisa value (volume) of AII.  

The phase III is defined (see Fig.1 and Fig.3) as starting at the point B, the 
right hand maximum of the 3rd derivative of fVC . Since it is of interest to find 
the slope of the phase III, this phase was divided in thirds, and the middle one 
is selected for being less influenced by the curve between phase II and phase 
III. This third was divided into ten equidistant points and fVC slopes (1st de-
rivatives) in these points were computed. The mean value of such ten slope 
values determines SIII. 

 

 
Figure 3. VC-derived variables using the analytic function  

(see the text for more details) 
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In order to compare the computational efficiencies of the approximations 
we measured the computational time to obtain the analytic function (CTF), the 
computational time to get the VC derived variables (CTDV) and also we com-
puted the mean square error of the approximation (MSE).  

3 Materials 

The performance of the TS models and FA-LMA model are compared 
among them in order to assess their effectiveness in uneven VCs. With this 
purpose in mind, an expert in anesthesiology and respiratory physiology se-
lected three particulars VCs (VC1, VC2 and VC3): 

 
- VC1 is a typical record with little noise in the phase III, which is approx-

imately linear. 
- VC2 is a record with a “jump” between phases I and II, without excessive 

noise in this phase and phase III showing a curve shape. 
- VC3 is similar to the previous record, but it has no “jumps” and at the 

same time it is noisier in the phase II. 
 

A total of 100 VCs from 10 patients undergoing general anesthesia were 
analyzed to test the TS’s and FA-LMA models.  

After approval by the local Ethics Committee and having the written in-
formed patients’ consents, we enrolled 10 mechanically ventilated ASA I-II 
patients undergoing general anesthesia, aged 40-70 years. Standard monitor-
ing includes ECG, pulse oxymetry, noninvasive arterial pressure and capno-
graphy. Anesthesia was induced with propofol 1.5-2 mg kg-1, fentanyl 5 μg 
kg-1 and vecuronium 0.08 mg kg-1 and maintained with a continuous infusion 
of propofol 100 μg kg min and remifentanyl 0.5 μg kg min. Lungs were venti-
lated through a cuffed endotracheal tube with an Avance Workstation (GE, 
Madison, WI, USA) using the following settings: tidal volume of 8 ml kg-1, 
respiratory rate of 15 bpm, inspiration to expiration ratio of 1:2 without inspi-
ratory pause and FiO2 of 0.5. 

Data on VC and respiratory mechanics were recorded continuously and on 
a breath-by-breath basis using the NICO capnograph connected to a laptop 
and specific software DataColl (Respironics, Wallingford, Conn., USA). The 
mainstream sensor was placed between the endotracheal tube and the “Y” 
piece of the anesthesia circuit. The response time of the CO2 sensor was < 60 
ms and the resolution was 2 mmHg. The fixed orifice differential pressure 
flow sensor with a measurement range between 1 and 180 L/min had an accu-
racy of 3%. Calibration was performed according to manufacturer’s guides.  
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3 Results 

The comparison of the performance among M1, M2, M3 and FA-LMA 
models, using previously defined indexes and VCs, is shown at Table 1, Table 
2 and Table 3. The computations were performed using Matlab software 
running in a PC with an AMD Athlon® 64 X2 Dual Core Processor 4000, 
2.11 Ghz, 1 Gb Ram. 

Table 1: Comparison of performance indexes among the three TS models 
(M1, M2 and M3) and FA-LMA model. 

CTF: computation time of the analytic function.  

Model CTF [s] 
 VC1 VC2 VC3 

M1 0.598 0.592 0.569 
M2 0.761 0.799 0.772 
M3 0.598 0.636 0.615 

FA-LMA 0.754 0.868 0.824 

Table 2: Comparison of performance indexes among the three TS models 
(M1, M2 and M3) and FA-LMA model. 

CTDV: computation time of the derived variables of interest.  

Model CTDV [s] 
 VC1 VC2 VC3 

M1 25.64 29.12 28.93 
M2 70.29 79.57 79.71 
M3 70.07 80.53 81.15 

FA-LMA 3.364 3.775 3.788 
 

Table 3: Comparison of performance indexes among the three TS models 
(M1, M2 and M3) and FA-LMA model. 

MSE: mean square error of the approximation. 

Model MSE 
 VC1 VC2 VC3 

M1 0.724 0.523 0.332 
M2 0.423 0.224 0.307 
M3 0.344 0.247 0.274 

FA-LMA 0.376 0.926 0.582 



Scandurra A.G., Dai Pra A.L., Passoni L.I., Meschino G.J., Clara F.M., Tusman G., Böhm S. H. 

24 

Figure 4 shows the VC raw data (red points) and the obtained functions us-
ing the four models (blue lines). Columns 1, 2 and 3 show the results for VC1, 
VC2  and VC3 respectively obtained by the four models: M1, M2, M3 and FA-
LMA (one row per model). 

VC1 VC2 VC3 

   

   

   

   

 Figure 4. VC raw data (red points) and obtained functions 
using the proposed models (blue lines) for the selected VCs 
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Figures 5, 6 and 7 show the final membership functions belonging to M1, 
M2 and M3 at the modeling of VC3. 

 

 
Figure 5. Membership functions of M1 model  

 
Figure 6. Membership functions of M2 model  

 
Figure 7. Membership functions of M3 model  
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As the main objective in this work is to fit each VC, then the MSE index is 
selected to evaluate the performance of the model. The M3 model showed the 
best performance among the TS models according to the MSE index. As 
a result, it was selected to be compared against classical models. The coeffi-
cient of variation was selected as a quality index of derived variables of inter-
est (VDaw and SIII), because the inter- and intra-patient variability do not allow 
a direct comparison among their values. 

Table 4 shows the mean values of MSE and the coefficient of variation of 
the 100 VC.  

Table 4. Comparison of MSE and coefficient of variation values 
obtained with M3 and FA-LMA models. 

  
MSE 

Coefficient of variation 
Model VDaw SIII 

M3 0.3106 ± 0.0889 0.0095 0.011 
FA-LMA 0.5865 ± 0.2166 0.0381 0.039 

 

4 Conclusions  

One of the limitations of studies that compare methodologies for VC anal-
ysis is the lack of an accepted gold standard. Ward S. Fowler was the first to 
describe a technique for such an analysis and it has been commonly used as 
the reference method. One important methodological limitation of Fowler’s 
method is that the computation of VDaw depends on a prior determination of  
SIII. Therefore, Fowler’s technique could be influenced by a “contamination” 
resulting from sequential and cumulative errors [10]. This is not the case for 
the TS and FA-LMA models because measurements of VDaw as well as most 
of the derived variables of VC are computed independently using the analytic 
function.  

The FA-LMA model requires a previously defined ad-hoc function whose 
parameters must be adjusted, while in M3, both the function and its parameters 
are automatically generated by the model. Based on the analysis of MSE and 
coefficient of variation, the M3 model, compared to the FA-LMA model, 
shows less susceptibility to noise, and it presents more precision in determin-
ing the airway-alveolar interface, airway dead space and slope of phase III. 
This dynamically adaptive M3 model is mathematically robust, and thus suita-
ble for computing the derived variables from clinical VC deformed by pathol-
ogies. 
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Appendix A 

The VC is an asymmetrical sigmoid curve that can be represented by a ma-
thematical function. This continuous real-valued function is obtained by 
a non-linear least square curve fitting, which can be viewed as an optimization 
problem of the parameters of a proposed function (model function), as Equa-
tion (5). Figure 8 shows this model function. 

 

0 1 2( , ) ( , ) ( , ) ( , ),f t f t f t f t= + +x x x x  (5) 
 

where, t is the independent variable and x the parameter vector (x = [x1, x2, x3, 
x4, x5, x6, x7]).  

 
Figure 8. Model function  

The first term f0(t,x) is the lower asymptote, the second and third ones are 
logistic curves, whose parameterization allows the generation of a model of 
the VC curve, where t is the expired volume and f is the concentration of CO2. 
This model considers the well known asymmetry of the wave shape. 

Terms of Equation (5) are defined in Equations (6). 
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The parameters of the Equations (6) are optimized by the Levenberg-
Marquardt algorithm [10]. 

Appendix B 

Fuzzy inference is a computer paradigm based on fuzzy set theory, fuzzy 
if-then rules and fuzzy reasoning. 

The structure of fuzzy inference system consists of:  
- a rule base which selects the set of fuzzy rules; 
- a database (or dictionary) which defines the membership functions used in 

the fuzzy rules; 
- a reasoning mechanism which performs the inference procedure (it derives 

a conclusion from facts and rules). 
The goal of a Takagi-Sugeno Fuzzy Model (TS) [8] is the generation of 

fuzzy rules from a given input-output data set. 
A TS fuzzy rule for a 2 input system takes the form: 

“If x is A and y is B then z = f(x, y)” 
where A and B are fuzzy sets in the antecedent, while z = f(x, y) is a crisp 
function in the consequent. f(.,.) is very often a polynomial function of 
x and y. 

If f(.,.) is a first order polynomial (a linear function), then the resulting 
fuzzy inference is called a first order Sugeno fuzzy model. This is the model 
used in this work. 

The rule base is generated starting from an appropriate partition of the in-
put-output data space. 

In the input space partitioning, the antecedent of a fuzzy rule defines a lo-
cal fuzzy region. The consequent describes the local behavior within the fuzzy 
region. 

In this work, both grid partition and substractive clustering partition were 
used [6].  

In the grid partition, each region is included in a square area (hypercube). 
In the cluster partition, each region is determined by covering a subset of 

the whole input space that characterizes a region of possible occurrence of the 
input vectors. 

The overall output is obtained by aggregation of the rules outputs. Usually, 
the weighted average is used to perform this operation. 

The weighted average expression includes the membership functions in the 
antecedents and the mathematical expressions of the consequents with their 
respective parameters. These parameters could be optimized using the input-
output data.  
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