Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Welding production lines are indispensable parts of the production processes in the automotive industry. In many cases, the production line operation is ensured by equipment with linear conveyors or robots, wherein linear guiding systems are basic elements of these manipulators. The failure of some linear guiding system may lead to significant production losses. Hence, the knowledge of their operating loads is necessary to determine very exactly. The objective of this article is to identify and verify the basic dynamic parameters of the welding manipulator, as a starting point for the operating loads calculation of linear guiding systems. This issue was solved by combining the measurement of kinematic values and MBS (Multi-body System) analysis in case of the concrete linear welding manipulator, which was the main part of the observed welding line. We have measured time values of acceleration in defined points of the manipulator and evaluated them by FIR (Finite Impulse Response) filter, FFT (Fast Fourier Transformation) analysis and ODS (Operating Deflection Shapes) analysis. The obtained frequency spectrum showed oscillation frequencies, which could be compared with frequencies of the manipulator dynamical model by different mass and stiffness parameters. In this way, the dynamic parameters of the welding manipulator can be identified and used for the next calculations and simulations, where loads of linear guiding systems will produce very important results.
Rocznik
Tom
Strony
51--61
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Faculty of Mechanical Engineering, Technical University of Liberec, Studenstká 2, 460 01 Liberec, Czech Republic
autor
- Faculty of Mechanical Engineering, Technical University of Liberec, Studenstká 2, 460 01 Liberec, Czech Republic
Bibliografia
- 1. Dresig H., Holzweißig F. 2008. Maschinendynamik. [In German: Machine dynamics]. Berlin: Springer-Verlag. ISBN 978-3-540-87693-9.
- 2. Gąska Damian, Tomasz Haniszewski. 2016. “Modelling studies on the use of aluminium alloys in lightweight load-carrying crane structures”. Transport Problems 11(3): 13-20. DOI: 10.20858/tp.2016.11.3.2. ISSN: 1896-0596.
- 3. Haniszewski Tomasz, Damian Gaska. 2017. “Numerical modelling of I-Beam jib crane with local stresses in wheel supporting flanges - influence of hoisting speed”. Nase More 64(1): 7-13. DOI: 10.17818/NM/2017/1.2. ISSN: 0469-6255.
- 4. Homišin J., R. Grega, P. Kaššay, G. Fedorko, V. Molnár. 2019 „Removal of systematic failure of belt conveyor drive by reducing vibrations”. Engineering Failure Analysis 99: 192-202. ISSN 1350-6307.
- 5. Jacyna Marianna, Mariusz Izdebski, Emilian Szczepański, Paweł Gołda. 2018. „The task assignment of vehicles for a production company”. Symmetry-Basel 10(11). Article number: 551.
- 6. Jacyna-Gołda Ilona, Mariusz Izdebski, Emilian Szczepanski. 2016. „Assessment of the method effectiveness for choosing the location of warehouses in the supply network”. Challenge of Transport Telematics, TST 2016. Communications in Computer and Information Science 640: 84-97.
- 7. Jacyna-Gołda Ilona, Mariusz Wasiak, Mariusz Izdebski, Konrad Lewczuk, Roland Jachimowski, Dariusz Pyza. 2016. „The evaluation of the efficiency of supply chain configuration”. Proceedings of the 20th International Scientific Conference Transport Means 2016. Transport Means - Proceedings of the International Conference: 953-957.
- 8. Liptai Pavol, Marek Moravec, Ervin Lumnitzer, Marcela Gergeľová. 2017. „Proposal of the sound insulating measures for a vibrational sorter and verification of the measured effectiveness”. Advances in Science and Technology-Research Journal 11(3): 196-203. ISSN 2299-8624. DOI: 10.12913/22998624/76068.
- 9. Maláková Silvia. 2017. „Analysis of gear wheel body influence on gearing stiffness”. Acta Mechanica Slovaca 21(3): 34-39. ISSN 1335-2393.
- 10. Mazurkiewicz D. 2014. „Computer-aided maintenance and reliability management systems for conveyor belts”. Eksploatacja i Niezawodnosc – Maintenance and Reliability 16(3): 377–382.
- 11. Mazurkiewicz D. 2010. „Tests of extendability and strength of adhesive-sealed joints in the context of developing a computer system for monitoring the condition of belt joints during conveyor operation”. Eksploatacja i Niezawodnosc – Maintenance and Reliability 3: 34-39.
- 12. Navrátil M. 1981. Měření mechanického kmitání. Úvod do teorie snímačů. [In Czech: Measurement of mechanical vibration. Introduction to sensor theory]. Praha: SNTL.
- 13. Puškár Michal, Melichar Kopas. 2018. „System based on thermal control of the HCCI technology developed for reduction of the vehicle NOX emissions in order to fulfil the future standard Euro 7”. Science of the Total Environment 643: 674-680. ISSN 0048-9697. DOI: 10.1016/j.scitotenv.2018.06.082.
- 14. Sága Milan, Peter Kopas, Milan Uhríčik. 2012. „Modeling and experimental analysis of the aluminium alloy fatigue damage in the case of bending - torsion loading”. Procedia Engineering. 48: 599-606. ISSN 1877-7058.
- 15. Sága Milan, Milan Vaško, Nadežda Čuboňová, Wiesława Piekarska. 2016. Optimisation algorithms in mechanical engineering applications. Harlow: Pearson. ISBN 978-1-78449-135-2.
- 16. Tomeh E. 2015. Technická diagnostika. Vibrační diagnostika strojů a zařízení. [In Czech: Technical diagnostics. Vibration diagnostics of machines and equipment]. Liberec: Technical university in Liberec. ISBN 978-80-7494-174-0.
- 17. Zul'ová L., Grega R., Krajňák J. 2017. „Optimization of noisiness of mechanical system by using a pneumatic tuner during a failure of piston machine”. Engineering Failure Analysis 79: 845-851. ISSN 1350-6307.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c10a5dd-23c9-4ea1-ac65-a95bfe4e650e