PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrodynamics of two- and three-phase systems in an agitated vessel with two agitators

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of the agitators confi guration, the agitator speed, the volumetric gas flow rate, the sucrose concentration in aqueous solution, and the yeast suspension concentration on the hydrodynamics of twoor three-phase systems in an agitated vessel with two agitators has been presented in this paper. The gas hold-up and the average residence time of the bubbles were measured in agitated vessel with a liquid height of H = 2D and the internal diameter of D = 0.288 m. The study was carried out for gas-liquid and biophase-gas-liquid systems, where the gas phase was air, the liquid phase was distilled water or an aqueous solution of sucrose (c = 2.5% mass., 5% mass.), and the biophase was a suspension of Saccharomyces cerevisiae yeast (ys = 1% mass.). The research results were analysed taking into account the inf uence of the type of the upper or lower agitator, agitator speed, gas flow rate, and type of liquid in the system on the gas hold-up and the average residence time of the gas bubbles. The experimental results were mathematically described.
Rocznik
Strony
18--24
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wz.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Stręk, F. (1981). Agitation and agitated vessels (in Polish), WNT, Warszawa.
  • 2. Kamieński, J. (2004). Agitation of multiphase systems (in Polish), WNT, Warszawa.
  • 3. Moucha, T., Linek, V. & Prokopova, E. (2003). Gas hold-up, mixing time and gas-liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and techmix impeller and their combinations. Chem. Eng. Sci. 58, 1839–1846. DOI: 10.1016/S0009-2509(02)00682-6.
  • 4. Montante, G. & Paglianti, A. (2015). Gas hold-up distribution and mixing time in gas–liquid stirred tanks. Chem. Eng. J. 279, 648–658. DOI: 10.1016/j.cej.2015.05.058.
  • 5. Petricek, R., Moucha, T., Rejl, F.J., Valenz, L., Haidl J. & Cmelikova, T. (2018). Volumetric mass transfer coefficient, power input and gas hold-up in viscous liquid in mechanically agitated fermenters. Measurements and scale-up. Int. J. Heat Mass Transf. 124, 1117–1135. DOI: 10.1016/j.ijheatmasstransfer.2018.04.045.
  • 6. Xiao, Y., Li, X., Ren, S., Mao, Z. & Yang, C. (2020). Hydrodynamics of gas phase under typical industrial gassing rates in a gas-liquid stirred tank using intrusive image-based method. Chem. Eng. Sci. 227, 115923. DOI: j.ces.2020.115923.
  • 7. Rahimzadeh, A., Ein-Mozaffari, F. & Lohi, A. (2022). Investigation of power consumption, torque fluctuation and gas hold-up in coaxial mixers containing a shear-thinning fluid: Experimental and numerical approaches. Chem. Eng. Process.: Process Intensif. 177, 108983. DOI: 10.1016/j.cep.2022.188983.
  • 8. Rahimzadeh, A., Ein-Mozaffari, F. & Lohi, A. (2022). Scale-up study of aerated coaxial mixing reactors containing non-newtonian power-law fluids: Analysis of gas hold-up, cavity size, and power consumption. J. Ind. Eng. Chem. 113, 293–315. DOI: 10.1016/j.jiec.2022.06.004.
  • 9. Frankiewicz, S.S. & Woziwodzki, Sz. (2023). Gas hold-up in an unsteady stirred vessel by means of infinite series. Pol. J. Chem. Tech. 25(2), 30–35. DOI: 10.2478/pjct-2023-0014.
  • 10. Garcia-Ochoa, F. & Gomez E. (2004). Theoretical prediction of gas-liquid mass transfer coefficient, specific area and hold-up in sparged stirred tanks. Chem. Eng. Sci. 59, 2489–2501. DOI: 10.1016/j.ces.2004.02.009.
  • 11. Busciglio, A., Grisafi, F., Scargiali, F. & Brucata A. (2013). On the measurement of local gas hold-up, interfacial area and bubble size distribution in gas-liquid contactors via light sheet and image analysis: Imaging technique and experimental results. Chem. Eng. Sci. 102, 551–566. DOI: 10.1016/j.ces.2013.08.029.
  • 12. Busciglio, A., Opletal, M., Moucha, T., Montante, G. & Paglianti A. (2017). Measurement of gas hold-up distribution in stirred vessels equipped with pitched blade turbines by means of Electrical Resistance Tomography. Chem. Eng. Trans. 57, 1273–1278. DOI: 10.3303/CET1757213.
  • 13. Jamshidzadeh, M., Ein-Mozaffari, F. & Lohi, A. (2020). Local and overall gas holdup in an aerated coaxial mixing system containing a non-Newtonian fluid. AIChE J. 66, e17016. DOI: 10.1002/aic.17016.
  • 14. Cudak, M. & Rakoczy, R. (2022). Hydrodynamics of gas-liquid and biophase-gas-liquid systems in stirred tanks of different scales. Korean J. Chem. Eng. 39(11), 2959–2971. DOI: 10.1007/s11814-022-1281-2.
  • 15. Newell, R. & Grano, S. (2007). Hydrodynamics and scale up in Rushton turbine flotation cells: Part 1 – Cell hydrodynamics. Int. J. of Miner. Process. 81, 224–236. DOI: 10.1016/j.minpro.2006.06.007.
  • 16. Khalili, F., Nasr, M.R.J., Kazemzadeh, A. & Ein-Mozaffari, F. (2018). Analysis of gas holdup and bubble behavior in a biopolymer solution inside a bioreactor using tomography and dynamic gas disengagement techniques. J. Chem. Technol. Biotechnol. 93, 340–349. DOI: 10.1002/jctb.5356.
  • 17. Cudak, M. (2016). Experimental and numerical analysis of transfer processes in a biophase-gas-liquid system in a bioreactor with an impeller (in Polish). BEL Studio Sp. z o.o., Warszawa.
  • 18. de Jesus, S.S., Moreira Neto, J. & Filho, R.M. (2017). Hydrodynamics and mass transfer in bubble column, conventional airlift, stirred airlift and stirred tank bioreactors, using viscous fluid: A comparative study. Biochem. Eng. J. 118, 70–81. DOI: 10.1016/j.bej.2016.11.019.
  • 19. Garcia-Ochoa, F., Gomez, E. & Santos, V.E. (2020). Fluid dynamic conditions and oxygen availability effects on microbial cultures in STBR: An overview. Biochem. Eng. J. 164, 107803. DOI: 10.1016/j.bej.2020.107803.
  • 20. Cudak, M. (2014). Hydrodynamic characteristics of mechanically agitated air-aqueous sucrose solutions. Chem. Process Eng. 35(1), 97–107. DOI: 10.2478/cpe-2014-0007.
  • 21. Cudak, M. (2020). The effect of vessel scale on gas hold-up in gas-liquid systems. Chem. Process. Eng. 41(4), 241–256. DOI: 10.1515/cpe-2016-0005.
  • 22. Barros, P.A., Ein-Mozaffari, F. & Lohi A. (2022). Gas Dispersion in Non-Newtonian Fluid with Mechanically Agitated Systems: A review. Processes 10, 275–304 DOI: 10.3390/pr10020275.
  • 23. Major-Godlewska, M. & Radecki, D. (2018). Experimental analysis of gas hold-up for gas-liquid system agitated in a vessel equipped with two impellers and vertical tubular baffles. Pol. J. Chem. Tech. 20(1), 7–12. DOI: 10.2478/pjct-2018-0002.
  • 24. Major-Godlewska, M. & Cudak, M. (2022). Gas hold-up in vessel with dual impellers and different baffles. Energies 2022, 15, 8685. DOI: 10.3390/en15228685.
  • 25. Vlaev, S.D., Valeva, M.D. & Mann, R. (2002). Some effects of rheology on the spatial distribution of gas hold-up in a mechanically agitated vessel. Chem. Eng. J. 87, 21–30. PII: S1385-8947(01)00208-X.
  • 26. Yawalkar, A.A., Heesing, A.B.M., Versteeg, G.F. & Pangarkar, V.G. (2002). Gas hold-up in stirred tank reactors in the presence of inorganic electrolytes. Can. J. Chem. Eng. 80, 791–799. DOI: 10.1002/cjce.5450800502.
  • 27. Karcz, J., Siciarz, R. & Bielka, I. (2004). Gas hold-up in a reactor with dual system of impellers. Chem. Pap. 58(6), 404–409.
  • 28. Zhang, L., Pan, Q. & Rempel, G.L. (2006). Liquid phase mixing and gas hold-up in a multistage-agitated contactor with co-current up flow of air/viscous fluids. Chem. Eng. Sci. 61, 6189–6198. DOI: 10.1016/j.ces.2006.06.0.
  • 29. Khare, A.S. & Niranjan, K. (2004). The effect of vessel diameter on time dependent gas hold-up variations in highly viscous impeller agitated liquids. Chem. Eng. Process. 43, 571–573. DOI: 10.1016/S0255-2701(03)00044-8.
  • 30. Major-Godlewska, M. & Karcz, J. (2011). Process characteristics for a gas-liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles. Chem. Pap. 65(2), 132–138. DOI: 10.2478/s11696-010-0080-0.
  • 31. Chinnasamy, G., Kaliannan, S., Eldho, A. & Nadarajan, D. (2016). Development and performance analysis of a novel agitated vessel. Korea. J. Chem. Eng. 33(4), 1181–1185. DOI: 10.1007/s11814-015-0264-y.
  • 32. Vasconcelos, J.M.T., Orvalho, S.C.P., Rodrigues, A.M.A.F. & Alves, S.S. (2000). Effect of blade shape on the performance of six-bladed disk turbine impellers. Ind. Eng. Chem. Res. 39, 203–213. DOI: 10.1021/ie9904145.
  • 33. Pinelli, D., Bakker, A., Myers, K.J., Reeder, M.F. & Magelli, F. (2003). Some features of a novel gas dispersion impeller in a dual-impeller configuration. Chem. Eng. Res. Des. 81, 448–454. DOI: 10.1205/026387603765173709.
  • 34. Zhang, L., Pan, Q. & Rempel, G.L. (2005). Liquid backmixing and phase hold-up in a gas-liquid multistage agitated contactor. Ind. Eng. Chem. Res. 44, 5304–5311. DOI: 10.1021/ie491701.
  • 35. Bao, Y., Yang, J.Y., Chen L. & Gao Z. (2012). Influence of the top impeller diameter on the gas dispersion in a sparged multi-impeller stirred tank. Ind. Eng. Chem. Res. 51, 12411–12420. DOI: 10.1021/ie301150b.
  • 36. Xie, M., Xia, J., Zhou, Z., Chu, J., Zhuang, Y. & Zhang, S. (2014). Flow pattern, mixing, gas hold-up and mass transfer coefficient of triple-impeller configurations in stirred tank bioreactors. Ind. Eng. Chem. Res. 53, 5941–5953. DOI: 10.1021/ie400831s.
  • 37. Jamshed, A., Cooke, M., Ren, Z. & Rodgers, T.L. (2018). Gas–liquid mixing in dual agitated vessels in the heterogeneous regime. Chem. Eng. Res. Des. 133, 55–69. DOI: 10.1016/j.cherd.2018.02.034.
  • 38. Jegatheeswaran, S. & Ein-Mozaffari, F. (2020). Use of Gas Helicity as an Indicator to Evaluate Impeller Design and its Gas Holdup: Proof of Concept for the Intensification of Gas-Liquid Mixing, Chem. Eng. Process.: Process Intensif. 156, 108091. DOI: 10.1016/j.cep.2020.108091.
  • 39. Adamiak, R. & Karcz, J. (2007). Effects of type and number of impellers and liquid viscosity on the power characteristics of mechanically agitated gas-liquid systems, Chem. Pap. 61, 16–23. DOI: 10.2478/s11696-006-0089-6.
  • 40. Karcz, J. (1998). Studies of gas hold-up for slender agitated vessel equipped with single or double system of disc turbines (in Polish), Inż. Chem. Proc. 19, 335–352.
  • 41. Adamiak, R. (2005). Research on the conditions of gas dispersion in liquids in agitated vessels of various scales, PhD Thesis. Szczecin University of Technology.
  • 42. Karcz, J, Siciarz, R. & Bielka, I. (2004). Gas hold-up in a rector with dual system of impellers, Chem. Pap. 58, 404–409.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c0d9ce5-6130-4636-8477-57299228a95a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.