PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic evolution of mixed circular edge-screw dislocations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the extended Huygens–Fresnel principle, the analytical expressions for the cross-spectral density function of mixed circular edge-screw dislocations beams propagating through atmospheric turbulence have been derived, and used to study the dynamic evolution of mixed circular edge-screw dislocations in free space and atmospheric turbulence. It is shown that the radius of circular edge dislocations increases with increasing propagation distance, and both the positions of the optical vortex and the center of circular edge dislocations are located at the point (0, 0) when mixed circular edge-screw dislocations propagate in free space. When mixed circular edge-screw dislocations propagate in the atmospheric turbulence, the position of optical vortices varies with increasing propagation distance, the circular edge dislocation evolves into a pair of optical vortices with the opposite topological charge ±1, and the pair of optical vortices will annihilate as soon as the propagation distance becomes large enough.
Czasopismo
Rocznik
Strony
471--481
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
  • Department of physics, Taiyuan University of Science and Technology, Taiyuan 030024, China
autor
  • Department of physics, Taiyuan University of Science and Technology, Taiyuan 030024, China
  • College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China
autor
  • College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China
autor
  • Department of Physics, North University of China, Taiyuan 030051, China
Bibliografia
  • [1] NYE J.F., BERRY M.V., Dislocations in wave trains, Proceedings of the Royal Society of London A 336(1605), 1974, pp. 165–190.
  • [2] SOSKIN M.S., VASNETSOV M.V., Singular optics, [In] Progress in Optics, [Ed.] E. Wolf, Elsevier, Vol. 42, 2001, Chapter 4, pp. 219–276.
  • [3] GRIER D.G., A revolution in optical manipulation, Nature 424(6950), 2003, pp. 810–816.
  • [4] HUIYUN WU, SHEN SHENG, ZHISONG HUANG, HUA WANG, SIQING ZHAO, XIEGU XU, ZHENHAI SUN, RUI XIAO, Study on power efficiency of vortex beam propagation through an optical system with phase optimization, Optica Applicata 42(3), 2012, pp. 597–611.
  • [5] YUANJIE YANG, YUAN DONG, CHENGLIANG ZHAO, YANGJIAN CAI, Generation and propagation of an anomalous vortex beam, Optics Letters 38(24), 2013, pp. 5418–5421.
  • [6] YUANJIE YANG, MINGZHOU CHEN, MAZILU M., MOURKA A., YI-DONG LIU, KISHAN DHOLAKIA, Effect of the radial and azimuthal mode indices of a partially coherent vortex field upon a spatial correlation singularity, New Journal of Physics 15, 2013, article ID 113053.
  • [7] JINHONG LI, WEIWEI WANG, MEILING DUAN, JINLIN WEI, Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams, Optics Express 24(18), 2016, pp. 20413–20423.
  • [8] JINHONG LI, JUN ZENG, Dynamic evolution of coherent vortex dipole in atmospheric turbulence, Optica Applicata 45(3), 2015, pp. 299–308.
  • [9] DIPANKAR A., MARCHIANO R., SAGAUT P., Trajectory of an optical vortex in atmospheric turbulence, Physical Review E 80(4), 2009, article ID 046609.
  • [10] JINHONG LI, HONGRUN ZHANG, BAIDA LÜ, Composite coherence vortices in a radial beam array propagating through atmospheric turbulence along a slant path, Journal of Optics 12(6), 2010, article ID 065401.
  • [11] YAMEI LUO, BAIDA LÜ, Far-field properties of electromagnetic elliptical Gaussian vortex beams, Optics Communications 283(19), 2010, pp. 3578–3584.
  • [12] JUN ZENG, JINHONG LI, Dynamic evolution and classification of coherent vortices in atmospheric turbulence, Optica Applicata 45(3), 2015, pp. 299–308.
  • [13] JINHONG LI, JUN ZENG, MEILING DUAN, Classification of coherent vortices creation and distance of topological charge conservation in non-Kolmogorov atmospheric turbulence, Optics Express 23(9), 2015, pp. 11556–11565.
  • [14] PETROV D.V., Second harmonic generation by optical beams with edge phase dislocations, Optics Communications 192(1–2), 2001, pp. 101–106.
  • [15] HONGWEI YAN, BAIDA LÜ, Dynamic evolution of an edge dislocation through aligned and misaligned paraxial optical A B C D systems, Journal of the Optical Society of America A 26(4), 2009, pp. 985–992.
  • [16] CHAOLIANG DING, LIUZHAN PAN, BAIDA LÜ, Phase singularities and spectral changes of spectrally partially coherent higher-order Bessel–Gauss pulsed beams, Journal of the Optical Society of America A 26(12), 2009, pp. 2654–2661.
  • [17] PETROV D.V., Splitting of an edge dislocation by an optical vortex, Optical and Quantum Electronics 34(8), 2002, pp. 759–773.
  • [18] HONGWEI YAN, BAIDA LÜ, Vortex-edge dislocation interaction in the presence of an astigmatic lens, Optics Communications 282(5), 2009, pp. 717–726.
  • [19] DE HE, HONGWEI YAN, BAIDA LÜ, Interaction of the vortex and edge dislocation embedded in a cosh-Gaussian beam, Optics Communications 282(20), 2009, pp. 4035–4044.
  • [20] HAITAO CHEN, ZENGHUI GAO, HUAJUN YANG, XUEFANG ZOU, XUEQIONG LIU, Interaction between a vortex and an edge dislocation nested in a cos-Gaussian beam passing through a tilted lens, Journal of Modern Optics 59(6), 2012, pp. 579–586.
  • [21] KAICHENG ZHU, HUIQIN TANG, YING TANG, HUI XIA, Gyrator transform of generalized sine-Gaussian beams and conversion an edge-dislocation into a vortex, Optics and Laser Technology 64, 2014, pp. 11–16.
  • [22] PAS’KO V.A., SOSKIN M.S., VASNETSOV M.V., Transversal optical vortex, Optics Communications 198(1–3), 2001, pp. 49–56.
  • [23] PETROV D.V., Vortex-edge dislocation interaction in a linear medium, Optics Communications 188(5–6), 2001, pp. 307–312.
  • [24] PETROV D.V., Vortex-edge dislocation interaction in second-order nonlinear media, Optics Communications 200(1–6), 2001, pp. 381–387.
  • [25] SCHWARZ U.T., SOGOMONIAN S., MAIER M., Propagation dynamics of phase dislocations embedded in a Bessel light beam, Optics Communications 208(4–6), 2002, pp. 255–262.
  • [26] BIHUA TANG, YAMEI LUO, YONG ZHANG, SHANGBIN ZHENG, ZENGHUI GAO, Analytical vectorial structure of Gaussian beams carrying mixed screw-edge dislocations in the far field, Optics Communications 324, 2014, pp. 182–187.
  • [27] ZAUDERER E., Complex argument Hermite–Gaussian and Laguerre–Gaussian beams, Journal of the Optical Society of America A 3(4), 1986, pp. 465–469.
  • [28] JUN QU, YANLI ZHONG, ZHIFENG CUI, YANGJIAN CAI, Elegant Laguerre–Gaussian beam in a turbulent atmosphere, Optics Communications 283(14), 2010, pp. 2772–2781.
  • [29] KIMEL I., ELIAS L.R., Relations between Hermite and Laguerre Gaussian modes, IEEE Journal of Quantum Electronics 29(9), 1993, pp. 2562–2567.
  • [30] ANDREWS L.C., PHILLIPS R.L., Laser Beam Propagation through Random Media, SPIE, Bellingham, 2005.
  • [31] WANG S.C.H., PLONUS M.A., Optical beam propagation for a partially coherent source in the turbulent atmosphere, Journal of the Optical Society of America 69(9), 1979, pp. 1297–1304.
  • [32] GRADSHTEYN I.S., RYZHIK I.M., Table of Integrals, Series and Products, Academic Press, New York, 2007.
  • [33] MANDEL L., WOLF E., Optical Coherence and Quantum Optics, Cambridge University, Cambridge, 1995.
  • [34] GBUR G., VISSER T.D., Coherence vortices in partially coherent beams, Optics Communications 222(1–6), 2003, pp. 117–125.
  • [35] FREUND I., SHVARTSMAN N., Wave-field phase singularities: the sign principle, Physical Review A 50(6), 1994, pp. 5164–5172.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c062754-d8c6-4406-acf3-6424ecd2a9de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.