PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Feasibility study of RANS in predicting propeller cavitation in behind-hull conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The propeller cavitation not only affects the propulsive efficiency of a ship but also can cause vibration and noise. Accurate predictions of propeller cavitation are crucial at the design stage. This paper investigates the feasibility of the Reynolds-averaged Navier–Stokes (RANS) method in predicting propeller cavitation in behind-hull conditions, focusing on four aspects: (i) grid sensitivity; (ii) the time step effect; (iii) the turbulence model effect; and (iv) ability to rank two slightly different propellers. The Schnerr-Sauer model is adopted as the cavitation model. A model test is conducted to validate the numerical results. Good agreement on the cavitation pattern is obtained between the model test and computational fluid dynamics. Two propellers are computed, which have similar geometry but slightly different pitch ratios. The results show that RANS is capable of correctly differentiating the cavitation patterns between the two propellers in terms of the occurrence of face cavitation and the extent of sheet cavitation; moreover, time step size is found to slightly affect sheet cavitation and has a significant impact on the survival of the tip vortex cavitation. It is also observed that grid refinement is crucial for capturing tip vortex cavitation and the two-equation turbulence models used – realizable k-ε and shear stress transport (SST) k-ω – yield similar cavitation results.
Rocznik
Tom
Strony
26--35
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Shanghai Merchant Ship Design and Research Institute, 2633 Zu Chong Zhi Road, 201203 Shanghai, China
autor
  • Shanghai Merchant Ship Design and Research Institute, 2633 Zu Chong Zhi Road, 201203 Shanghai, China
autor
  • Shanghai Merchant Ship Design and Research Institute, 2633 Zu Chong Zhi Road, 201203 Shanghai, China
  • Shanghai Merchant Ship Design and Research Institute, 2633 Zu Chong Zhi Road, 201203 Shanghai, China
autor
  • Shanghai Maritime University, 1550 Haigang Ave, 201306 Shanghai, China
Bibliografia
  • 1. F. A. Pereira, F. S. Felice, and F. Salvatore, “Propeller cavitation in non-uniform flow and correlation with the near pressure field,” Journal of Marine Science and Engineering, vol. 4, pp. 1-21, 2016.
  • 2. K., Shiraishi, Y. Sawada, D. Arakawa, and K. Hoshino, “Experimental estimation for pressure fluctuation on ship stern induced by cavitating propeller using cavity shape measurements,” in Proceedings of the 10th International Symposium on Cavitation - CAV2018, Baltimore, USA, 2018.
  • 3. A. Asnaghi, U. Svennberg, and R. E. Bensow, “Numerical and experimental analysis of cavitation inception behaviour for high-skewed low-noise propellers,” Applied Ocean Research, vol. 79, pp. 197-214, 2018.
  • 4. F. Salvatore, H. Streckwall, and T. V. Terwisga, “Propeller cavitation modelling by CFD - results from the VIRTUE 2008 Rome Workshop,” in Proceedings of the First International Symposium on Marine Propulsors Smp’09, Trondheim, Norway, 2009.
  • 5. G. Vaz, D. Hally, T. Huuva, N. Bulten, et al., “Cavitating flow calculations for the E779A propeller in open water and behind conditions: code comparison and solution validation,” in Proceedings of the 4th International Symposium on Marine Propulsors Smp’15, Austin, Texas, USA, 2015.
  • 6. N. Yilmaz, M. Atlar, P. A. Fitzsimmons, and N. Sasaki, “Computational fluid dynamic investigations of propeller cavitation in the presence of a rudder,” in Proceedings of the 3rd International Symposium on Naval Architecture and Maritime, Istanbul, Turkey, 2018.
  • 7. L. Wang, C. Guo, P. Xu, and Y. Su, “Analysis of the performance of an oscillating propeller in cavitating flow,” Ocean Engineering, vol. 164, pp. 23-39, 2018.
  • 8. N. Sakamoto, and H. Kamiirisa, H, “Prediction of near field propeller cavitation noise by viscous CFD with semiempirical approach and its validation in model and full scale,” Ocean Engineering, vol. 168, pp. 41-59, 2018.
  • 9. S. Gaggero, G. Tani1, D. Villa, M. Viviani, F. Miglianti, P. Ausonio, P. Travi, G. Bizzarri, and F. Serra, “Propeller geometry optimization for pressure pulses reduction: an analysis of the influence of the rake distribution,” in Proceedings of the Fifth International Symposium on Marine Propulsors smp’17, Espoo, Finland, 2017.
  • 10. J. Hur, H. Kim, and H. Lee, “Numerical study on the effect of turbulence and cavitation model for propeller induced hull pressure fluctuation,” in Proceedings of the 10th International Symposium on Cavitation - CAV2018 Baltimore, Maryland, USA, 2018, pp. 834-837.
  • 11. S. Ando, K. Kimura, K. Segawa, and K. Yamamoto, “Study on the hybrid method of CFD and bubble dynamics for marine propeller cavitation noise prediction,” Proceedings of the 10th International Symposium on Cavitation - CAV2018 Baltimore, Maryland, USA, 2018, pp. 958-963.
  • 12. C. Zheng, D. Liu, and H. Huang, “The numerical prediction and analysis of propeller cavitation benchmark tests of YUPENG ship model,” Journal of Marine Science and Engineering, vol. 7, p. 387, 2019.
  • 13. O. Usta, and E. Korkut, “A study for cavitating flow analysis using DES model,” Ocean Engineering, vol. 160, pp. 397- 411, 2018.
  • 14. H. Y. Cheng, X. R. Bai, X. P. Long, B. Ji, X. X. Peng, and M. Farhat, “Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence,” Applied Mathematical Modeling, vol. 77, pp. 788-809, 2020.
  • 15. S. Gaggero, G. Tani, M. Viviani, and F. Conti, “A study on the numerical prediction of propellers cavitating tip vortex,” Ocean Engineering, vol. 92, pp. 137-161, 2014.
  • 16. Y. X. Zhang, X. P. Wu, Z. Y. Zhou, X. K. Cheng, and Y. L. Li, “A numerical study on the interaction between forward and aft propellers of hybrid CRP pod propulsion systems,” Ocean Engineering, vol. 186, p. 106084, 2019.
  • 17. K. W. Shin, and P. Andersen, “CFD analysis of propeller tip vortex cavitation in ship wake fields,” in Proceedings of the 10th International Symposium on Cavitation - CAV2018, Baltimore, USA, 2018.
  • 18. V. Viitanen, T. Siikomen, and A. Sanchez-Caja, “Cavitation on model- and full-scale marine propellers: steady and transient viscous flow simulations at different Reynolds numbers,” Journal of Marine Science and Engineering, vol. 8, p. 141, 2020.
  • 19. A. Asnaghi, U. Svennberg, and R. E. Bensow, “Numerical and experimental analysis of cavitation inception behaviour for high-skewed low-noise propellers,” Applied Ocean Research, vol. 79, pp. 197-214, 2018.
  • 20. P. Perali, T. Lloyd, and G. Vaz, “Comparison of uRANS and BEM-BEM for propeller pressure pulse prediction: E779A propeller in a cavitation tunnel,” in Proceedings of the 19th Numerical Towing Tank Symposium, Nantes, France, 2016.
  • 21. International Towing Tank Conference (ITTC), “The specialist committee on computational fluid dynamics— final report and recommendations to the 26th ITTC,” in 26th ITTC, vol. 2, pp. 337-377, 2011.
  • 22. Y. X. Zhang, K. Chen, and D. P. Jiang, “CFD analysis of the lateral loads of a propeller in oblique flow,” Ocean Engineering, vol. 202, p. 107153, 2020.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c038985-0425-4e9e-99c1-e35206c38a76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.