PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Morphological analysis of organo-montmorillonites via MD simulations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Adsorption on clay surfaces has been studied intensively in recent years. The most curious subject of these studies, which are generally experimental, is how the surfactants are adsorbed at the atomic level to the surface. In this study, the adsorption of quaternary amine salt (tetradecyl dimethyl ethyl benzyl ammonium chloride–TDEBAC) to sodium montmorillonite (Na-MMT) with various cation exchange capacities (CEC) was investigated by using Molecular Dynamics (MD) simulation. In the simulations, as in the experimental studies, it was revealed that the surfactants were both adsorbed on to basal surfaces and settled between the layers. From the morphological analysis obtained from MD simulations, it was calculated that the inter-molecular interaction between the layers was higher than on the basal surface. For example, for the model with 118 CEC motif, the binding energy of all three surfactants in the models with the hydrophilic heads facing the same direction was calculated as -678.18 kcal/mol at the basal surface, while this value was found to be -688.90 kcal/mol in the interlayer. The more striking result is that in the simulations made by turning the head of the middle one of the three surfactants towards the tails of the right and left ones, only -34.86 kcal/mol binding energy was calculated on the basal surface, while this value was -525.63 kcal/mol in the interlayer. As compared middle reversed surfactant models with the same direction ones, despite increased CEC the intermolecular interaction decreased for the basal surface, but the interaction increased between the layers.
Rocznik
Strony
art. no. 152499
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
  • Istanbul Technical University, Mineral Processing Engineering Department, 34469, Maslak, Istanbul, Turkey
  • Department of Chemical and Materials Engineering University of Alberta, Edmonton, Alberta, Canada, T6G 2G6
autor
  • Informatics Institute, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
  • Afyonkocatepe University, Engineering Faculty, Mining Engineering Dept., 03200, Afyonkarahisar, Turkey
  • Department of Chemical and Materials Engineering University of Alberta, Edmonton, Alberta, Canada, T6G 2G6
autor
  • Department of Chemical and Materials Engineering University of Alberta, Edmonton, Alberta, Canada, T6G 2G6
  • Istanbul Technical University, Mineral Processing Engineering Department, 34469, Maslak, Istanbul, Turkey
Bibliografia
  • ANDERSEN, H. C., 1980. Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys, 72.
  • BERENDSEN, H. J. C., GRIGERA, J. R. & STRAATSMA, T. P., 1987. The Missing Term in Effective Pair Potentials. J Phys Chem-Us, 91, 6269-6271.
  • BERENDSEN, H. J. C., POSTMA, J. P. M., VANGUNSTEREN, W. F., DINOLA, A. & HAAK, J. R., 1984. Molecular-Dynamics with Coupling to an External Bath. J Chem Phys, 81, 3684-3690.
  • BREEN, C., WATSON, R., MADEJOVÁ, J., KOMADEL, P. & KLAPYTA, Z., 1997. Acid-Activated Organoclays: Preparation, Characterization and Catalytic Activity of Acid-Treated Tetraalkylammonium-Exchanged Smectites. Langmuir, 13, 6473-6479.
  • CYGAN, R. T., GREATHOUSE, J. A., HEINZ, H. & KALINICHEV, A. G., 2009. Molecular models and simulations of layered materials. Journal of Materials Chemistry, 19, 2470.
  • CYGAN, R. T., LIANG, J.-J. & KALINICHEV, A. G., 2004. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field. The Journal of Physical Chemistry B, 108, 1255-1266.
  • DAUBER-OSGUTHORPE, P., ROBERTS, V. A., OSGUTHORPE, D. J., WOLFF, J., GENEST, M. & HAGLER, A. T., 1988. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins, 4, 31-47.
  • DE PAIVA, L. B., MORALES, A. R. & VALENZUELA DÍAZ, F. R., 2008. Organoclays: Properties, preparation and applications. Applied Clay Science, 42, 8-24.
  • ERKAN, İ., ALP, İ. & ÇELIK, M. S., 2010. Characterization of Organo-Bentonites Obtained from Different Linear-Chain Quaternary Alkylammmonium Salts. Clays and Clay Minerals, 58, 792-802.
  • ERSOY, B. & CELIK, M. S., 2003. Effect of hydrocarbon chain length on adsorption of cationic surfactants onto clinoptilolite. Clays and Clay Minerals, 51, 172-180.
  • EWALD, P. P., 1921. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik, 369, 253-287.
  • FERMEGLIA, M., FERRONE, M. & PRICL, S., 2003. Computer simulation of nylon-6/organoclay nanocomposites: prediction of the binding energy. Fluid Phase Equilibr, 212, 315-329.
  • HANG, P. T. & BRINDLEY, G. W., 1970. Methylene blue adsorption by clay minerals. Determination of surface areas and cation exchange capacities. Clays and Clay Minerals, 18, 203-212.
  • HE, H., DING, Z., ZHU, J., YUAN, P., XI, Y., YANG, D. & FROST, R. L., 2005. Thermal characterization of surfactant-modified montmorillonites. clays and clay minerals, 53, 287-293.
  • HE, H., FROST, R. L., BOSTROM, T., YUAN, P., DUONG, L., YANG, D., XI, Y. & KLOPROGGE, J. T., 2006a. Changes in the morphology of organoclays with HDTMA+ surfactant loading. Applied Clay Science, 31, 262-271.
  • HE, H., MA, Y., ZHU, J., YUAN, P. & QING, Y., 2010. Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Applied Clay Science, 48, 67-72.
  • HE, H., ZHOU, Q., MARTENS, W. N., KLOPROGGE, T. J., YUAN, P., XI, Y., ZHU, J. & FROST, R. L., 2006b. Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics. Clays and Clay Minerals, 54, 689-696.
  • HEINZ, H. & SUTER, U. W., 2004. Atomic Charges for Classical Simulations of Polar Systems. The Journal of Physical Chemistry B, 108, 18341-18352.
  • HEINZ, H., VAIA, R. A., KRISHNAMOORTI, R. & FARMER, B. L., 2006. Self-Assembly of Alkylammonium Chains on Montmorillonite: Effect of Chain Length, Head Group Structure, and Cation Exchange Capacity. Chemistry of Materials, 19, 59-68.
  • HUA-BIN, L. & HAN-NING, X., 2012. Investigation on Intercalation Modification of Sodium-montmorillonite by Cationic Surfactant. Journal of Inorganic Materials, 27, 780-784.
  • KARATAŞ, D., TEKIN, A. & ÇELIK, M. S., 2013. Adsorption of quaternary amine surfactants and their penetration into the intracrystalline cavities of sepiolite. New Journal of Chemistry, 37, 3936.
  • LIU, H.-B. & XIAO, H.-N., 2012. Investigation on Intercalation Modification of Sodium-montmorillonite by Cationic Surfactant. Journal of Inorganic Materials, 27, 780-784.
  • LIU, X., LU, X. C., WANG, R. C., ZHOU, H. Q. & XU, S. J., 2009. Molecular dynamics insight into the cointercalation of hexadecyltrimethyl-ammonium and acetate ions into smectites. American Mineralogist, 94, 143-150.
  • MAES, A., STUL, M. S. & CREMERS, A., 1979. Layer Charge-Cation-Exchange Capacity Relationships in Montmorillonite. Clays and Clay Minerals, 27, 387-392.
  • MARKARIAN, J., 2005. Automotive and packaging offer growth opportunities for nanocomposites. Plastics, Additives and Compounding, 7, 18-21.
  • MERINSKA, D., MALAC, Z., POSPISIL, M., WEISS, Z., CHMIELOVA, M., CAPKOVA, P. & SIMONIK, J., 2002. Polymer/clay nanocomposites based on MMT/ODA intercalates. Composite Interfaces, 9, 529-540.
  • NAVRATILOVA, Z., WOJTOWICZ, P. E., VACULIKOVA, L. & SUGARKOVA, V., 2007. Sorption of alkylammonium cations on montmorillonite. Acta Geodynamica et Geomaterialia, 4, 59-65.
  • PAN, C. & SHEN, Y.-H., 2007. Estimation of Cation Exchange Capacity of Montmorillonite by Cationic Surfactant Adsorption. Communications in Soil Science and Plant Analysis, 34, 497-504.
  • PESKIR, G., 2003. On the diffusion coefficient: The Einstein relation and beyond. Stoch Models, 19, 383-405.
  • SWOPE, W. C., ANDERSEN, H. C., BERENS, P. H. & WILSON, K. R., 1982. A Computer-Simulation Method for the Calculation of Equilibrium-Constants for the Formation of Physical Clusters of Molecules - Application to Small Water Clusters. J Chem Phys, 76, 637-649.
  • TAMBACH, T. J., BOEK, E. S. & SMIT, B., 2006. Molecular order and disorder of surfactants in clay nanocomposites. Phys Chem Chem Phys, 8, 2700-2.
  • TANAKA, G. & GOETTLER, L. A., 2002. Predicting the binding energy for nylon 6,6/clay nanocomposites by molecular modeling. Polymer, 43, 541-553.
  • THENG, B. K. G., CHURCHMAN, G. J., GATES, W. P. & YUAN, G. 2008. Organically Modified Clays for Pollutant Uptake and Environmental Protection. In: HUANG, Q., HUANG, P. M. & VIOLANTE, A. (eds.) Soil Mineral Microbe-Organic Interactions. Berlin, Heidelberg: Springer, .
  • VAZQUEZ, A., 2008. Modification of montmorillonite with cationic surfactants. Thermal and chemical analysis including CEC determination. Applied Clay Science, 41, 24-36.
  • VIANI, A., GUALTIERI, A. F. & ARTIOLI, G., 2002. The nature of disorder in montmorillonite by simulation of X-ray powder patterns. American Mineralogist, 87, 966-975.
  • XI, Y., ZHOU, Q., FROST, R. L. & HE, H., 2007. Thermal stability of octadecyltrimethylammonium bromide modified montmorillonite organoclay. Journal of colloid and interface science, 311, 347-53.
  • YOSHIMOTO, S., OHASHI, F. & KAMEYAMA, T., 2005. X-ray diffraction studies of intercalation compounds prepared from aniline salts and montmorillonite by a mechanochemical processing. Solid State Commun, 136, 251-256.
  • ZENG, Q. H., YU, A. B., LU, G. Q. & STANDISH, R. K., 2003. Molecular Dynamics Simulation of Organic−Inorganic Nanocomposites: Layering Behavior and Interlayer Structure of Organoclays. Chemistry of Materials, 15, 4732-4738.
  • ZHAO, Q. & BURNS, S. E., 2012. Molecular dynamics simulation of secondary sorption behavior of montmorillonite modified by single chain quaternary ammonium cations. Environ Sci Technol, 46, 3999-4007.
  • ZHU, J., WANG, T., ZHU, R., GE, F., YUAN, P. & HE, H., 2011. Expansion characteristics of organo montmorillonites during the intercalation, aging, drying and rehydration processes: Effect of surfactant/CEC ratio. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384, 401-407.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c02edd5-ed77-4832-bd8d-5fc099a01a57
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.