PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Odour emission from primary settling tanks after air-tightening

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the present article was to determine odour emission rate from primary settling tanks after hermetisation. The paper presents the results of the research on odour emission from four settling tanks, covered with self-supporting aluminium domes with a diameter of 52 meters, located on urban wastewater treatment plants, with the planned flow capacity equal to 200 000 m3/day. Altogether, the olfactometry analysis of 189 samples of polluted air pulled from the domes with the use of an air blower which has efficiency of 12 000 m3/h was conducted. The results of odour concentration measurements were in a range of approximately 10 800 to 763 600 ouE/m3. Average odour emission rate was equal to 102 ouE/(s · m2). The obtained value is much higher than the literature data, available for non-hermetised settlers only. This rate enables better estimation of the odour stream that has to be deodorised after sealing the settling tanks.
Rocznik
Strony
22--27
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr., wz.
Twórcy
  • West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, Piastów Avenue 42, 71-065 Szczecin, Poland
  • AQUANET S.A., ul. Dolna Wilda 126, 61-492 Poznań, Poland
autor
  • West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Piastów Ave- nue 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Moran, S. (2017). Pollution Control. In S. Moran (Eds.), Process Plant Layout, 2nd Edition (pp. 187–206). Butterworth--Heinemann.
  • 2. Badach, J., Kolasińska, P., Paciorek, M., Wojnowski, W., Dymerski, T., Gębicki, J., Dymnicka, M. & Namieśnik, J. (2018). A case study of odour nuisance evaluation in the context of integrated urban planning. J. Environ. Manag., 213, 417–424. DOI: 10.1016/j.jenvman.2018.02.086.
  • 3. Conti, C., Guarino, M. & Bacenetti J. (2020). Measurements techniques and models to assess odor annoyance: A review. Environ. Internat., 134, 105261, DOI: 10.1016/j.envint.2019.105261.
  • 4. Aatamila, M., Verkasalo, P.K, Korhonen, M.J., Suominen, A.L., Hirvonen, M.R., Viluksela, M.K. & Nevalainen, A. (2011). Odour annoyance and physical symptoms among residents living near waste treatment centres. Environ. Res., 111(1), 164–170. DOI: 10.1016/j.envres.2010.11.008.
  • 5. Capelli, L., Sironi, S., Del Rosso, R., Céntola, P., Rossi, A. & Austeri, C. (2011). Odour impact assessment in urban areas: case study of the city of Terni. Proc. Environ. Sci., 4, n151–157. DOI: 10.1016/j.proenv.2011.03.018.
  • 6. Brancher, M., Griffi ths, K.D., Franco, D. & de Melo Lisboa, H. (2017). A review of odour impact criteria in selected countries around the world. Chemosphere, 168, 1531–1570. DOI: 10.1016/j.chemosphere.2016.11.160.
  • 7. Nicell, J.A. (2009). Assessment and regulation of odour impacts. Atmospheric Environ., 43(1), 196–206. DOI: 10.1016/j.atmosenv.2008.09.033.
  • 8. Estrada, J.M., Kraakman, N.J.R., Lebrero, R. & Muñoz, R. (2015). Integral approaches to wastewater treatment plant upgrading for odor prevention: Activated Sludge and Oxidized Ammonium Recycling. Biores. Technol. 196, 685–693. DOI: 10.1016/j.biortech.2015.08.044.
  • 9. Lewkowska, P., Cieślik, B., Dymerski, T., Konieczka, P. & Namieśnik, J. (2016). Characteristics of odors emitted from municipal wastewater treatment plant and methods for their identification and deodorization techniques. Environ. Res. 151, 573–586. DOI: 10.1016/j.envres.2016.08.030.
  • 10. Barbusinski, K., Kalemba, K., Kasperczyk, D., Urbaniec, K. & Kozik, V. (2017). Biological methods for odor treatment – A review. J. Cleaner Prod., 152, 223–241. DOI: 10.1016/j.jclepro.2017.03.093.
  • 11. Shammay, A., Sivret, E.C., Le-Minh, N., Lebrero Fernandez, R., Evanson, I. & Stuetz, R.M. (2016). Review of odour abatement in sewer networks. J. Environ. Chem. Engin., 4(4), 3866–3881. DOI: 10.1016/j.jece.2016.08.016.
  • 12. Lebrero, R., Rodríguez, E., García-Encina, P.A. & Muñoz, R. (2011). A comparative assessment of biofiltration and activated sludge diffusion for odour abatement. J. Hazard. Mater., 190(1–3), 622–630. DOI: 10.1016/j.jhazmat.2011.03.090.
  • 13. Estrada, J.M., Kraakman, N.J.R.B., Muñ oz, R. & Lebrero, R. (2011). A Comparative Analysis of Odour Treatment Technologies in Wastewater Treatment Plants. Environ. Sci. Technol., 45(3), 1100–1106. DOI: 10.1021/es103478j.
  • 14. Hansen, N.G. & Rindel, K. (2000). Bioscrubbing, an effective and economic solution to odour control at wastewater treatment plants. Water Sci. Technol., 41(6), 155–164. DOI: 10.2166/wst.2000.0105.
  • 15. Brancher, M., Piringer, M., Franco, D., Filho, P.B., De Melo Lisboa, H. & Schauberger, G. (2019). Assessing the interannual variability of separation distances around odour sources to protect the residents from odour annoyance. J. Environ. Sci., 9, 11–24. DOI: 10.1016/j.jes.2018.09.018.
  • 16. Tabase, R.K., Millet, S., Brusselman, E., Ampe, B., De Cuyper, C., Sonck, B. & Demeyer, P. (2020). Effect of ventilation control settings on ammonia and odour emissions from a pig rearing building. Biosystems Engin., 192, 215–231. DOI: 10.1016/j.biosystemseng.2020.01.022.
  • 17. Reyes, J., Gutiérrez, M.C., Toledo, M., Vera, L., Sánchez, L., Siles, J.A. & Martín, M.A. (2020). Environmental performance of an industrial biofilter: Relationship between photochemical oxidation and odorous impacts. Environ. Res., 183, 109168. DOI: 10.1016/j.envres.2020.109168.
  • 18. Zhang, X.L., Yan, S., Tyagi, R.D. & Surampalli, R.Y. (2013). Odor control in lagoons. J. Environ. Manag., 124, 62–71. DOI: 10.1016/j.jenvman.2013.03.022.
  • 19. Muñoz, R., Sivret, E.C., Parcsi, G., Lebrero, R., Wang, X., Suffet, I.H. & Stuetz, R.M. (2010). Monitoring techniques for odour abatement assessment. Water Res., 44(18), 5129–5149. DOI: 10.1016/j.watres.2010.06.013.
  • 20. Capelli, L., Sironi, S., Del Rosso, R., Céntola, P., Rossi, A. & Austeri, C. (2011). Olfactometric approach for the evaluation of citizens’ exposure to industrial emissions in the city of Terni, Italy. Sci. Total Environ., 409(3), 595–603. DOI: 10.1016/j.scitotenv.2010.10.054.
  • 21. Capelli, L., Sironi S., Del Rosso R. & Guillot J.M. (2013). Measuring odours in the environment vs. dispersion modelling: A review. Atmospheric Environ., 71, 731–743. DOI: 10.1016/j.atmosenv.2013.07.029.
  • 22. Sommer-Quabach, E., Piringer, M., Petz, E. & Schauberger, G. (2014). Comparability of separation distances between odour sources and residential areas determined by various national odour impact criteria. Atmospheric Environ., 95, 20–28. DOI: 10.1016/j.atmosenv.2014.05.068.
  • 23. Lucernoni, F., Capelli, L. & Sironi, S. (2017). Comparison of different approaches for the estimation of odour emissions from landfill surfaces. Waste Manag., 63, 345–353. DOI: 10.1016/j.wasman.2016.09.041.
  • 24. Frechen, F.B. (2004). Odour emission inventory of German wastewater treatment plants - odour flow rates and odour emission capacity. Water Sci. Technol., 50(4), 139–146. DOI: 10.2166/wst.2004.0244.
  • 25. European Committee for Standardization. (2003). European Standard: Air Quality − Determination of Odor Concentration by Dynamic Olfactometry. EN13725:2003. Brussels, Belgium.
  • 26. Zilio, M., Orzi, V., Chiodini, M., Riva, C., Acutis, M., Boccasile, G. & Adani, F. (2020). Evaluation of ammonia and odour emissions from animal slurry and digestate storage in the Po Valley (Italy). Waste Management., 103, 296–304. DOI: 10.1016/j.wasman.2019.12.038.
  • 27. Toledo, M., Gutiérrez, M.C., Siles, J.A. & Martín, M.A. (2018). Full-scale composting of sewage sludge and market waste: Stability monitoring and odor dispersion modeling. Environ. Res., 167, 739–750. DOI: 10.1016/j.envres.2018.09.001.
  • 28. Schauberger, G., Lim, T.T., Ni, J.Q., Bundy, D.S., Haymore, B.L., Diehl, C.A. & Heber, A.J. (2013). Empirical model of odor emission from deep-pit swine finishing barns to derive a standardized odor emission factor. Atmospheric Environ., 66, 84–90. DOI: 10.1016/j.atmosenv.2012.05.046.
  • 29. Lucernoni, F., Tapparo, F., Capelli, L. & Sironi, S. (2016). Evaluation of an Odour Emission Factor (OEF) to estimate odour emissions from landfill surfaces. Atmospheric Environ., 144, 87–99. DOI: 10.1016/j.atmosenv.2016.08.064.
  • 30. Stuetz, R. & Frechen, F.B. (2005). Odours in Wastewater Treatment Measurement, Modelling and Control. IWA Publishing. Retrieved March 15, 2020. from https://iwaponline.com/ebooks/book/29/Odours-in-Wastewater-Treatment-Measurement. DOI: 10.2166/9781780402932.
  • 31. Lebrero, R., Bouchy, L., Stuetz, R. & Muñoz, R. (2011). Odor Assessment and Management in Wastewater Treatment Plants: A Review. Critical Rev. Environ. Sci. Technol., 41(10), 915–950. DOI: 10.1080/10643380903300000.
  • 32. Gostelow, P., Parsons, S.A. & Stuetz, R.M. (2001). Odour measurements for sewage treatment works. Water Res., 35(3), 579–597. DOI: 10.1016/s0043-1354(00)00313-4.
  • 33. Sówka, I., Grzelka, A. & Miller, U. (2017). Problematyka odorów w procesach gospodarki ściekowej. Wodociągi-Kanalizacja. 6(160), 39–42.
  • 34. Capelli, L., Sironi, S., & Rosso, R.D. (2014). Odour Emission Factors: Fundamental Tools for Air Quality Management. Chem. Engin. Transac., 40, 193–198. DOI: 10.3303/CET1440033.
  • 35. Hudson, N. & Ayoko, G.A. (2008). Odour sampling 1: Physical chemistry considerations. Biores. Technol., 99(10), 3982–3992. DOI: 10.1016/j.biortech.2007.04.034.
  • 36. Nagaraj, A. & Sattler, M. (2005). Correlating Emissions with time and temperature to predict worstcase emissions from open liquid area sources. J. Air & Waste Manag. Assoc., 55(8), 1077–1084. DOI: 10.1080/10473289.2005.10464713.
  • 37. Schwarzenbach, R., Gschwend, P. & Imboden, D. (2003). Environ. Organic Chem., 2nd Edition. New York: John Wiley & Sons.
  • 38. Capelli, L., Sironi, S., Del Rosso, R., & Céntola, P. (2009). Design and validation of a wind tunnel system for odour sampling on liquid area sources. Water Sci. Technol., 59(8), 1611–1620. DOI: 10.2166/wst.2009.123.
  • 39. Hudson, N. & Ayoko, G.A. (2008). Odour sampling. 2. Comparison of physical and aerodynamic characteristics of sampling devices: A review. Biores. Technol., 99(10), 3993–4007. DOI: 10.1016/j.biortech.2007.03.043.
  • 40. Hudson, N., Ayoko, G.A., Dunlop, M., Duperouzel, D., Burrell, D., Bell, K. & Heinrich, N. (2009). Comparison of odour emission rates measured from various sources using two sampling devices. Biores. Technol., 100(1), 118–124. DOI: 10.1016/j.biortech.2008.05.043.
  • 41. Hudson, N., Bell, K., McGahan, E., Lowe, S., Galvin, G. & Casey, K. (2007). Odour emissions from anaerobic piggery ponds. 2: Improving estimates of emission rate through recognition of spatial variability. Biores. Technol., 98(10), 1888–1897. DOI: 10.1016/j.biortech.2006.06.013.
  • 42. Sówka, I., Sobczyński, P. & Miller, U. (2015). Wpływ sezonowej zmienności odorów emitowanych ze źródeł powierzchniowych pasywnych na zasięg oddziaływania zapachowego wybranej komunalnej oczyszczalni ścieków. Rocz. Ochr. Środ., 17(2), 1339–1349.
  • 43. Sobczyński, P., Sówka, I. & Bezyk, Y. (2015). Charakterystyka zmienności emisji odorów z osadników wstępnych i jej wpływ na zasięg oddziaływania zapachowego oczyszczalni ścieków komunalnych. In A. Kotowski, K. Piekarska & B. Kaźmierczak (Eds.) Interdyscyplinarne zagadnienia w inżynierii i ochronie środowiska. Tom 6 (pp. 356–363). Wrocław: Of. Wydaw. Polit. Wroc.
  • 44. Meteomodel (2019, March). Pogoda i Klimat. Retrieved March 23, 2020, https://meteomodel.pl/aktualne-dane-pomiarowe/.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bfd5ddd-ffb2-4349-a914-36466a75a297
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.