PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water absorption of black chickpea using a finite difference method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Evaluation of moisture absorption in foodstuffs such as black chickpea is an important stage for skinning and cropping practices. Water uptake process of black chickpea was discussed through normal soaking in four temperature levels of 20, 35, 50 and 65 °C for 18 hours, and then the hydration kinetics was predicted by Peleg’s model and finite difference strategy. Model results showed that with increasing soaking temperature from 20 to 65 °C, Peleg’s rate and Peleg’s capacity constant reduced from 13.368×10-2 to 5.664×10-2 and 9.231×10-3 to 9.138×10-3, respectively. Based on key results, a rise in the medium temperature caused an increase in the diffusion coefficient from 5.24×10-10 m2/s to 4.36×10-9 m2/s, as well. Modelling of moisture absorption of black chickpea was also performed employing finite difference strategy. Comparing the experimental results with those obtained from the analytical solution of the theoretical models revealed a good agreement between predicted and experimental data. Peleg’s model and finite difference technique revealed their predictive function the best at the temperature of 65 °C.
Rocznik
Strony
327--–341
Opis fizyczny
Bibliogr. 41 poz., tab., rys.
Twórcy
autor
  • Bu-Ali Sina University, Faculty of Agriculture, Department of Biosystems Engineering, 6517833131, Hamedan, Iran
  • Poznan University of Technology, Institute of Technology and Chemical Engineering, Department of Process Engineering, Berdychowo 4, 60-965 Poznan, Poland
  • Poznan University of Technology, Institute of Technology and Chemical Engineering, Department of Process Engineering, Berdychowo 4, 60-965 Poznan, Poland
  • Bu-Ali Sina University, Faculty of Agriculture, Department of Biosystems Engineering, 6517833131, Hamedan, Iran
Bibliografia
  • 1. Alvarez J., Carbonell V., Martinez E. Florez M., 2019. The use of Peleg’s equation to model water absorption in triticale (x triticosecale wittmack) seeds magnetically treated before soaking. Rom. J. Phys., 64, 810.
  • 2. Bayram M., Kaya A., Oner M.D., 2004. Changes in properties of soaking water during production of soy-bulgur. J. Food Eng., 61, 221–230. DOI: 10.1016/S0260-8774(03)00094-3.
  • 3. Copeland L.O., McDonald M.F., 2012. Principles of seed science and technology. Springer Science & Business Media.
  • 4. Crank J., 1975. The Mathematics of Diffusion. 2nd ed. Clarendon Press, Oxford.
  • 5. Cunningham S.E., McMinn W.A.M., Magee T.R.A., Richardson P.S., 2007. Modelling water absorption of pasta during soaking. J. Food. Eng., 82, 600–607. DOI: 10.1016/j.jfoodeng.2007.03.018.
  • 6. Cunningham S.E., McMinn W.A.M., Magee T.R.A., Richardson P.S., 2008. Effect of processing conditions on the water absorption and texture kinetics of potato. J. Food. Eng., 84, 214–223. DOI: 10.1016/j.jfoodeng.2007.05.007.
  • 7. Galvez A.V., Cuello E.N., Mondaca R.L., Zura L., Miranda M., 2009. Mathematical modeling of mass transfer during rehydration process of Aloe vera (Aloe barbadensis Miller). Food Bioprod. Process., 87, 4, 254–260. DOI: 10.1016/j.fbp.2008.10.004.
  • 8. Geankopolis C.J., 1983. Transport processes: Momentum, heat and mass allyn and bacon series in engineering. Allyn & Bacon, Boston, MA
  • 9. Ghribi A.M., Gafsi I.M., Blecker C., Danthine S., Attia H., Besbes S., 2015. Effect of drying methods on physicochemical and a functional property of chickpea protein concentrates. J. Food. Eng., 165, 179–88. DOI: 10.1016/ j.jfoodeng.2015.06.021.
  • 10. Gurtas F.S., Mehmet M.A.K., Evranuz E.O., 2001. Water diffusion coefficients of selected legumes grown in Turkey as affected by temperature and variety. Turk. J. Agric. For., 25, 5, 297–304.
  • 11. Huang E., Mittal G.S., 1995. Meatball cooking – modelling and simulation. J. Food. Eng., 24, 1, 87–100. DOI: 10. 1016/0260-8774(94)P1610-A.
  • 12. Kashiri M., Kashaninejad M., Aghajani N., 2010. Modelling water absorption of sorghum during soaking. Latin. Am. Appl. Res., 40, 4, 383–388.
  • 13. Khazaei J., Mohammadi N., 2009. Effect of temperature on hydration kinetics of sesame seeds (Sesamum indicumL.). J. Food Eng., 91, 542–552. DOI: 10.1016/j.jfoodeng.2008.10.010.
  • 14. Kowalski S.J., Mierzwa D., 2013. Numerical analysis of drying kinetics for shrinkable products such as fruits and vegetables. J. Food. Eng., 114, 522–529. DOI: 10.1016/j.jfoodeng.2012.08.037.
  • 15. Kowalski S.J., Pawłowski A., 2010. Modelling of kinetics in stationary and intermittent drying. Drying Technol., 28, 1023–1031. DOI: 10.1080/07373937.2010.497095.
  • 16. Kowalski S.J., Perré P., 2007. A special issue on damage of materials by drying: modelling, numerical simulation, and experimental studies. Drying Technol., 25, 2065. DOI: 10.1080/07373930701729370.
  • 17. Maskan M., 2002. Effect of processing on hydration kinetics of three wheat products of the same variety. J. Food Eng., 52, 337–341. DOI: 10.1016/S0260-8774(01)00124-8.
  • 18. Miano A.C., Sabadoti V.D. Augusto P.E.D., 2018. Enhancing the hydration process of common beans by ultrasound and high temperatures: Impact on cooking and thermodynamic properties. J. Food Eng., 225, 53–61. DOI: 10.1016/j.jfoodeng.2018.01.015.
  • 19. Mohsenin N.N., 1987. Physical properties of plant and animal materials. New York: Gordon and Breach.
  • 20. Montanuci F.D., Jorge L.M.M., Jorge, R.M.M., 2015. Effect of time and temperature on the hydration process of barley grains. Heat Mass Transfer, 51, 363–372. DOI: 10.1007/s00231-014-1417-y.
  • 21. Moreira F., Chenlo F., Chaguri L., Fernandes C., 2008. Water absorption, texture, and color kinetics of air-dried chestnuts during rehydration. J. Food. Eng., 86, 584–594. DOI: 10.1016/j.jfoodeng.2007.11.012.
  • 22. Nussinovitch A., Peleg M., 1990. An empirical model for describing weight changes in swelling and shrinking gels. Food Hydrocoll., 4, 69–76. DOI: 10.1016/S0268-005X(09)80329-9.
  • 23. Oliveira A.L., Colnaghi B.G., da Silva E.Z., Gouvea I.R., Vieira R.L., Augusto P.E.D., 2013. Modelling the effect of temperature on the hydration kinetic of adzuki beans (Vigna angularis). J. Food Eng., 118, 417–420. DOI: 10.1016/j.jfoodeng.2013.04.034.
  • 24. Peleg M., 1988. An empirical model for the description of moisture sorption curves. J. Food. Sci., 53, 4, 1216–1217. DOI: 10.1111/j.1365-2621.1988.tb13565.x.
  • 25. Pramiu P.V., Rizzi R.L., do Prado N.V., Coelho S.R., Bassinello P.Z., 2015. Numerical modelling of chickpea (Cicer arietinum) hydration: The effects of temperature and low pressure. J. Food. Eng., 165, 112–23. DOI: 10.1016/ j.jfoodeng.2015.05.020.
  • 26. Prasad K., Vairagar P.R., Bera M. B. 2010. Temperature dependent hydration kinetics of Cicer arietinum splits. Food Res. Int., 43, 2, 483–488. DOI: 10.1016/j.foodres.2009.09.038.
  • 27. Ranjbari A., Kashani Nejad, M., Alami, M., Khamiri M., 2011. Effect of ultrasound treatment on the water absorption properties of peas in the process of soaking. Electronic processing and storage of foods, 2, 1, 91–105 (In Persian).
  • 28. Resio A.C., Aguerre R.J., Suarez C., 2006. Hydration kinetics of amaranth grain. J. Food Eng., 72, 247–253. DOI: 10.1016/j.jfoodeng.2004.12.003.
  • 29. Sabapathy N.D., 2005. Heat and mass transfer during cooking of chickpea-measurements and computational simulation. MSc Thesis. Department of Agricultural and Bioresource Engineering University of Saskatchewan Saskatoon, Saskatchewan.
  • 30. Segovia R.G., Bello A.A., Monzo J.M., 2010. Rehydration of air-dried Shiitake mushroom (Lentinusedodes) caps: Comparison of conventional and vacuum water immersion processes. LWT Food Sci. Technol., 44, 2, 480–488. DOI: 10.1016/j.lwt.2010.08.010.
  • 31. Shafaei S.M., Masoumi A.A., 2013a. Application of viscoelastic model in the bean soaking. International Conference on Agricultural Engineering: New Technologies for Sustainable Agricultural Production and Food Security, February 24–26, Muscat (Oman).
  • 32. Shafaei S.M., Masoumi A.A., Roshan H., (2016). Analysis of water absorption of bean and chickpea during soaking using Peleg model. J. Saudi Soc. Agric. Sci. 15(2),135–44. DOI: 10.1016/j.jssas.2014.08.003.
  • 33. Shafaei S.M., Masoumi A.A., 2013b. Modelling of water absorption of bean during soaking. International Conference on Agricultural Engineering: New Technologies for Sustainable Agricultural Production and Food Security, February 24–26, Muscat, Oman.
  • 34. Shafaei S.M., Masoumi A.A., 2013c. Modeling of water absorption of chickpea during soaking. 1st International e-Conference on Novel Food Processing, February 26–27, Mashhad (Iran).
  • 35. Shafaei S.M., Masoumi A.A., 2014. Evaluation of Khazaei model in predicting of water absorption of chickpea during soaking. Agri. Adv., 3, 1, 1–8.
  • 36. Singh J., 2010. Processing and utilization of legumes. In: Grain Legumes Production in Asia, Tokyo.
  • 37. Sopade P.A., Obekpa J.A., 1990. Modelling water absorption in soybean, cowpea and peanuts at three temperatures using Peleg’s equation. J. Food Sci., 55, 1084–1087. DOI: 10.1111/j.1365-2621.1990.tb01604.x.
  • 38. Turhan M., Sayar S., Gunasekaran S., 2002. Application of Peleg model to study water absorption in chickpea during soaking. J. Food. Eng., 53, 153–159. DOI: 10.1016/S0260-8774(01)00152-2.
  • 39. Waezi-Zadeh M., Ghazanfari A., Noorbakhsh S., 2010. Finite element analysis and modeling of water absorption by date pits during a soaking process. J. Zhejiang Univ. Sci. B, 11, 482–488. DOI: 10.1631/jzus.B0910641.
  • 40. Williams R., Mittal G.S., 1999. Low-fat fried foods with edible coatings: Modelling and simulation. J. Food. Sci., 64, 2, 317–322. DOI: 10.1111/j.1365-2621.1999.tb15891.x.
  • 41. Yildirim A., Bayram M., Öner M.D., 2012. Hydration kinetics of ultrasound treated chickpeas (Cider arietinum L.) during soaking. Journal of the Faculty of Agriculture of Harran University (Turkey), 16, 4, 26–35.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bfc2512-d644-493f-b799-71b7e6b314f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.