PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of an ontology-based adaptive personalized e-learning system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
E-learning has fast become an active field of research with a lot of investments towards web-based delivery of personalized learning contents to learners. Some issues of e-learning arise from the heterogeneity and interoperability of learning content adapting to learner's styles and preferences. This has brought about the development of an ontology-based personalized learning system to solve this problem. This research developed an ontology-based personalized e-learning system that presents suitable learning contents to learners based on their learning style, preferences, background knowledge, and personal profile.
Rocznik
Strony
64--84
Opis fizyczny
Bibliogr. 18 poz., fig., tab.
Twórcy
  • The Federal University of Technology, School of Computing, Department of Information Technology, FUTA Rd, Akure, Nigeria
autor
  • The Federal University of Technology, School of Computing, Department of Information Technology, FUTA Rd, Akure, Nigeria
  • The Federal University of Technology, School of Computing, Department of Information Technology, FUTA Rd, Akure, Nigeria
Bibliografia
  • [1] Abu-Sayf, F.K. (1979). The Scoring of Multiple-choice Tests: A Closer Look. Educational Technology, 19(6), 5–15.
  • [2] Adewale, O.S. (2006). University Digital libraries: an initiative for teaching, research, and service. Adeyemo Publishing House.
  • [3] Agbonifo, O., & Obolo, O. (2018). Genetic Algorithm-based Curriculum Sequencing Model for Personalized E-Learning System. I.J. Modern Education and Computer Science, 5, 27–35.
  • [4] Baker, F. (2001). The Basics of Item Response Theory. University of Maryland, College Park, MD: ERIC Clearinghouse on Assessment and Evaluation.
  • [5] Baker, F.B. (1992). Item Response Theory: Parameter estimation techniques. Marcel Dekker.
  • [6] Beulah, C., Latha, C.B., & Kirubakaran, E. (2013). Personalized Learning Path Delivery in Web based Educational Systems using a Graph Theory based Approach. Computer Science, 55428839.
  • [7] Boyinbode, O., & Akintade, F. (2015). A Cloud Based Mobile Learning Interface. Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science (pp. 353–356). San Francisco, USA.
  • [8] Boyinbode, O., & Bagula, A. (2012). An Interactive Mobile Learning System for Enhancing Learning in Higher Education. Proceedings of the IADIS International Mobile Learning Conference Berlin (pp. 331–334). Germany.
  • [9] Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling, and User–Adapted Interaction, 11, 87-110.
  • [10] Chen, C.M., & Chung, C.J. (2008). Personalized mobile English vocabulary learning system based on item response theory and learning memory cycle. Computers & Education, 51(2), 624–647.
  • [11] Chi,Y. (2009). Ontology-based Curriculum Content Sequencing System with Semantic Rules. Expert Systems with Applications, 36(4), 7838–7847. https://doi.org/10.1016/j.eswa.2008.11.048
  • [12] Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory. Holt, Rinehart, and Winston.
  • [13] Dag, F., & Gecer, A. (2009). Relations between online learning and learning styles. Procedia Social and Behavioral Sciences, 1, 862–871.
  • [14] Hambleton, R.K., Swaminathan, H., & Rogers, H.J. (1991). Fundamentals of Item Response Theory. Sage Publications.
  • [15] Hamzeh, M. (2005). Using Distractors in Correcting for Guessing in Multiple-Choice Tests. Educational Sciences, 32(1), 192–197.
  • [16] Kurilovas, E., Zilinskiene, I., & Dagiene, V. (2016). Recommending Suitable Learning Paths According to Learners’ Preferences: Experimental Research Results. Computers in Human Behavior, 51, 945–951.
  • [17] Uhomoibhi, J.O. (2006). Implementing e-learning in Northern Ireland: prospects and challenges. Campus-Wide Information Systems, 23(1), 4–14.
  • [18] Yarandi, M., Jahankhani, H., & Tawil., A. (2013). A Personalized Adaptive e-learning approach based on semantic web technology. Computer Science, 6257403.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bf9204a-13c1-4145-b305-a2132c2a507a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.