PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of pH on determination of activation energies and the optimum temperatures of hydrolysis of olive oil by lipase from porcine pancreas

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The present paper reports the determination of the activation energies and the optimum temperatures of olive oil hydrolysis by porcine pancreas lipase with simultaneous effect of pH. Methods: The parameters were estimated based on the literature data on the activity curves versus temperature for olive oil hydrolysis by lipase obtained from porcine pancreas. It was assumed that both the hydrolysis reaction process and the deactivation process of lipase were first-order reactions by the enzyme concentration. A mathematical model describing the effect of temperature on porcine pancreas lipase activity was used. Results: The determinate activation energies Ea were from 31.37 ± 5.38 kJ/mol to 61.60 ± 11.46 kJ/mol, the optimum temperatures Topt were obtained in the range from 305.46 ± 1.26 K to 313.23 ± 1.18 K and the values of deactivation energies Ed were in the range from 65.18 ± 3.19 kJ/mol to 109.27 ± 6.79 kJ/mol. Conclusions: The obtained results (Ea, Ed, Topt) might find application in research on the prognosis of pancreatic cancer.
Rocznik
Strony
25--31
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Department of Chemical and Biochemical Engineering, Faculty of Chemical Technology and Engineering, University of Science and Technology in Bydgoszcz, Bydgoszcz, Poland
Bibliografia
  • [1] BAGI K., SIMON L.M., SZAJÁNI B., Immobilization and characterization of porcine pancreas lipase, Enzyme Microb. Tech., 1997, 20, 531–535.
  • [2] CASAS-GODOY L., DUQUESNE S., BORDES F., SANDOVAL G., MARTY A., Lipases: An Overview, [in:] G. Sandoval (Eds.), Lipases and Phospholipases. Methods in Molecular Biology (Methods and Protocols), Humana Press, 2012, 861.
  • [3] CHLADEK W., CZERWIK I., Mechanical properties of temporomandibular joint disc on the basis of porcine preparation investigations, Acta Bioeng. Biomech., 2008, 10 (4), 15–20.
  • [4] DONG H., LI J., LI Y., HU L., LUO D., Improvement of catalytic activity and stability of lipase by immobilization on organobentonite, Chem. Eng. J., 2012, 181–182, 590–596.
  • [5] ELSHEIKH A., KASSEM W., JONES S.W., Strain-rate sensitivity of porcine and ovine corneas, Acta Bioeng. Biomech., 2011, 13 (2), 25–36.
  • [6] GUERRAND D., Lipases industrial applications: focus on food and agroindustries, OCL 2017, 24 (4), D403.
  • [7] LEI L., BAI Y., LI Y., YI L., YAN Y., XIA C., Study on immobilization of lipase onto magnetic microspheres with epoxy groups, J. Magn. Magn. Mater., 2009, 321, 252–258.
  • [8] LI X., ZHU H., FENG J., ZHANG J., DENG X., ZHOU B., ZHANG H., XUE D., LI F., NIGEL J.M., LI Y, PENG Y., One-pot polylol synthesis of graphene decorated with size- and densitytunable Fe3O4 nanoparticles for porcine pancreatic lipase immobilization, Carbon, 2013, 60, 488–497.
  • [9] LI Y., JING T., XU G., TIAN J., DONG M., SHAO Q., WANG B., WANG Z., ZHENG Y., YANG C., GUO Z., 3-D magnetic graphene oxide-magnetite poly(vinyl alcohol) nanocomposite substrates for immobilizing enzyme, Polymer, 2018, 149, 13–22.
  • [10] LYKIDIS A., MOUGIOS V., ARZOGLOU P., Kinetics of the twostep hydrolysis of triacylglycerol by pancreatic lipases, Eur. J. Biochem., 1995, 230, 892–898.
  • [11] MENDES A.A., OLIVEIRA P.C., DE CASTRO H.F., Properties and biotechnological applications of porcine pancreatic lipase, J. Mol. Catal. B: Enzym., 2012, 78, 119–134.
  • [12] MIŁEK J., Application of the new method to determine of the kinetic parameters of inulin hydrolysis by exo-inulinase Aspergillus niger, J. Therm. Anal. Calorim., 2021, DOI: 10.1007/ s10973-020-10495-3.
  • [13] MIŁEK J., Calculation of temperature optimum as well as activation and deactivation energy for the olive oil hydrolysis with porcine pancreas lipase, Przem. Chem., 2020, 99 (4), 585–587.
  • [14] MIŁEK J., Determination of the activation energies and optimum temperature for the hydrolysis of p-nitrophenyl palmitate catalyzed by lipases, Przem. Chem., 2021, 100 (1), 103–104.
  • [15] MIŁEK J., Determination the optimum temperature and activation energy for the hydrolysis of starch catalyzed by α-amylase Bacillus licheniformis, Przem. Chem., 2020, 99 (6), 880–881.
  • [16] MIŁEK J., Determination the optimum temperatures and activation energies of inulin hydrolysis by endo-inulinase Aspergillus niger, Chem. Proc. Eng., 2020, 41 (3), 229–236.
  • [17] MIŁEK J., Estimation of the kinetic parameters for H2O2 enzymatic decomposition and for catalase deactivation, Braz. J. Chem. Eng., 2018, 35 (3), 995–1004.
  • [18] MIŁEK J., Thermodynamics and kinetics of thermal deactivation of catalase Aspergillus niger, Pol. J. Chem. Technol., 2020, 22 (2), 67–72.
  • [19] NOZAWA F., YALNIZ M., SARUC M., STANDOP J., EGAMI H., POUR P.M., Effects of fungal pancreatic enzymes on the function of islet cells in syrian golden hamsters, JOP. J. Pancreas (Online), 2013, 14 (3), 228–236.
  • [20] OLUSESAN A.T., AZURA L.K., FORGHANI B., BAKAR F.A., MOHAMED A.K.S., RADU S., MANAP M.Y.A., SAARI N., Purification, characterization and thermal inactivation kinetics of a non-regioselective thermostable lipase from a genotypically identified extremophilic Bacillus subtilis NS 8, New Biotechnology, 2011, 28, 738–745.
  • [21] PILAREK M, SZEWCZYK K.W., Kinetic model of 1,3-specific triacylglycerols alcoholysis catalyzed by lipases, J. Biotech., 2007, 127, 736–744.
  • [22] SCHMITKE J.L., WESCOTT C.R., KLIBANOW A.M., The mechanistic dissection of the plunge in enzymatic activity upon transition from water to anhydrous solvents, J. Am. Chem. Soc., 1996, 118, 3360–3365.
  • [23] STOYTCHEVA M., MONTERO G., ZLATEV R., LEÓN J.Á., GOCHEV V., Analytical methods for lipases activity determination: A review, Curr. Anal. Chem., 2012, 8, 400–407.
  • [24] STOTZ M., BARTH D.A., RIEDL J.M., ASAMER E., KLOCKER E.V., KORNPRAT P., HUTTERER G.C., PRINZ F., LACKNER K., STÖGER H., GERGER A., PICHLER M., The lipase/amylase ratio (LAR) in peripheral blood might represent a novel prognostic marker in patients with surgically resectable pancreatic cancer, Cancers, 2020, 12, 1798, 1–10.
  • [25] TSUJITA T., OKUDA H., Effect of bile salts on the interfacial inactivation of pancreatic carboxylester lipase, J. Lipid Research, 1990, 31, 831–838.
  • [26] VELJKOVIĆ D.Ž., RANKOVIĆ V.J., PANKOVIĆ S.B., ROSIĆ M.A., KOJIĆ M.R., Hyperelastic behavior of porcine aorta segment under extension-inflation tests fitted with various phenomenological models, Acta Bioeng. Biomech., 2014, 16 (3), 37–45.
  • [27] WOJCIK M., MIŁEK J., A new method to determine optimum temperature and activation energies for enzymatic reactions, Bioprocess Biosyst. Eng., 2016, 39, 1319–1323.
  • [28] WYCHOWAŃSKI M., OBRĘBSKI M., RĄPAŁA K., WIT A., GAJEWSKI J., MARCZAK K., Strength of proximal humeral fraction fixation employing implants of various types– a study of porcine bones, Acta Bioeng. Biomech., 2008, 10 (3), 29–35.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bf6c71b-e8bc-4ee9-808f-870964b6ba83
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.