Opuscula Math. 41, no. 4 (2021), 539-570
https: //doi.org/10.7494/OpMath.2021.41.4.539 OPUSCULA MATHEMATICA

REACTION-DIFFUSION COUPLED INCLUSIONS
WITH VARIABLE EXPONENTS
AND LARGE DIFFUSION

Jacson Simsen, Mariza Stefanello Simsen, and Petra Wittbold

Communicated by J.I. Diaz

Abstract. This work concerns the study of asymptotic behavior of coupled systems of
p(z)-Laplacian differential inclusions. We obtain that the generalized semiflow generated by
the coupled system has a global attractor, we prove continuity of the solutions with respect
to initial conditions and a triple of parameters and we prove upper semicontinuity of a family
of global attractors for reaction-diffusion systems with spatially variable exponents when
the exponents go to constants greater than 2 in the topology of L°°(Q2) and the diffusion
coefficients go to infinity.
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1. INTRODUCTION

PDEs for which the flow is essentially determined by an ordinary differential equation
have been studied by many researchers, see for example [2,9,10,12,16-18, 24, 25, 29].
In [27-29] the authors investigated in which way the parameter p(z) affects the dynamic
of problems involving the p(z)-Laplacian.

In this work we consider the following nonlinear coupled system

Ous _ div(Dg|Vus Ps () =27y, + lus Ps(@) =2y € F(ug,vg), t>0,x€Q,

ot

20: — div(Dy| V| %@ 72V0,) + |09 @20, € G(ug,v5), >0,z € Q,

ou ov (1.1)
S (t = 5 (¢ = t> Q

an(VT) an(7x) Oa _071'68 9’

us(0, ) = ugs(x), vs(0,2) = vos(x), T €,

where ugs,v0s € H = L*(Q), Q@ C R" (n > 1) is a smooth bounded domain,
Dy € [1,00), ps(+),¢s(-) € C(Q), py = min gps(z) > p, ¢; = min, 5q:(z) > g,
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pi o= max, 5 ps(r) < L, ¢f = max, gqs(z) < L, for all s € N. We assume that
ps(*) = v, ¢s(-) = ¢ in L>®(Q) and D; — oo as s — oo, where L,p, g > 2 are positive
constants. F, G : L?(Q) x L*(Q) — P(L*(Q)) are bounded, upper semicontinuous and
positively sublinear multivalued maps. We will prove that the dynamics of the coupled
reaction-diffusion system of inclusions with large diffusion is governed by an ordinary
coupled system of inclusions when the variable exponent become constant. The goal is
to prove the convergence of solutions and global attractors to the corresponding ones
of a limit ordinary differential coupled inclusion system.

The constant exponent case was considered in [23] and the variable exponent case
without perturbation on the main operator and positive finite diffusion was considered
in [26]. A partial differential inclusion with multivalued right-hand side of Lipschitz
type was considered in [20].

The paper is organized as follows. In Section 2 we remind some definitions, we
present properties of the operator and we prove the existence of global solutions and
global attractors. In Section 3 we obtain uniform estimates for solutions of (1.1).
In Section 4 we prove that the solutions {us} of (1.1) converge to the solution u of
the limit problem (4.1) which is an Ordinary Differential Inclusion (ODI) system,
and, after that, we obtain the upper semicontinuity of the global attractors for the
problem (1.1).

2. EXISTENCE OF GLOBAL SOLUTIONS AND GLOBAL ATTRACTOR

In this work, to study global attractors for the system (1.1) for which we do not
have guarantee of uniqueness of solution, we follow the general framework of the
works [5,21,22]. Let us first remind some definitions. Consider the system

ug + Au € F(u,v), te(0,7),
vy + Bv € G(u,v), te(0,7), (2.1)
u(0) = uo,v(0) = vo,

where A and B are monotone operators of subdifferential type defined in a real Hilbert
space H.

Definition 2.1 ([22]). A strong solution (weak solution) of ( 1) is a pair (u,v) satis-
fying: u,v € C([0,T]; H) for which there exists f,g € L'(0,T; H), f(t) € F(u(t),v(t)),
g(t) € G(u(t),v(t)) a.e. in (0,T), and such that (u,v) is a strong solution (weak
solution) (see Definition 3.1 and Theorem 3.4 in [7]) on (0,7) to the system (2.2)
below:

U + Au = fa

v+ Bv =g, (2.2)

u(0) = ug, v(0) = vy.
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Definition 2.2 ([3,4,22]). Let X be a real Banach space and U a topological space.
A mapping G : U — P(X) is called upper semicontinuous at u € U if

(i) G(u) is nonempty, bounded, closed and convex,
(ii) for each open subset D in X satisfying G(u) C D, there exists a neighborhood V
of u, such that G(v) C D, for each v € V.

If G is upper semicontinuous at each v € U, then it is called upper semicontinuous
on U.

Definition 2.3 ([3,4,22]). Let X be a real Banach space and M a Lebesgue measurable
subset in RY, ¢ > 1. By a selection of E : M — P(X) we mean a function f: M — X
such that f(y) € E(y) a.e. y € M, and we denote by Sel E the set

Sel E:={f; f: M — X is a measurable selection of E}.

In order to get global solutions we impose suitable conditions on the terms F' and G.

Definition 2.4 ([22]). The pair (F,G) of maps F,G : H x H — P(H), which takes
bounded subsets of H x H into bounded subsets of H, is called positively sublinear
if there exist @ > 0, b > 0, ¢ > 0 and mg > 0 such that for each (u,v) € H x H
with |lulg > mo or ||v||g > mo for which either there exists fy € F(u,v) satisfying
(u, fo) > 0 or there exists go € G(u,v) with (v, go) > 0, we have both

[fller < allullz +bllvlla +c and |glla < allullm +bljvllg +¢

for each f € F(u,v) and each g € G(u,v).

Now, let us remind the definitions of Lebesgue and Sobolev spaces with variable
exponents. Considering p € L°(2) := {q € L>=(Q) : essinfq > 1}, then

LPO(Q) == { u; u: Q — R is measurable and / lu(z)|P® dz < 0o
Q

is a Banach space with the norm

lullpey = inf {A > 0:(5 ) <1},

where p(u) == [, |u(z)|P®) dz. The following inequality will be used later
. - + - - +
win{ [l Full} < [ Tu@P@ s < max(lali, Joll,) 23)
Q

Furthermore,
w0 @) = {u e L7O(Q); |Vul € L0 ()}

which is a Banach space with the norm

lullwroer @) = [IVullpay + lullp@)-
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We refer the reader to [14,15] for more details on Lebesgue and Sobolev spaces
with variable exponents.
The authors in [30] (see also [31]) proved that the operator

Aly = —div(DS|Vu|p°‘(x)_2Vu) + |u|p5(x)_2u
is the realization in H of the operator A5 : X, — X, X, := Wir:()(Q),

Aju(v) := /DS|Vu(x)|p5(’”)_2Vu(x) : Vv(x)dm—i—/\u(sc)|p5(’”)_2u(gc)v(x)d:v,
Q Q

ie., A%(u) = Aju, if uwe D(A%) :={u e X,; Aju € H} and it is a maximal monotone
operator in H. Besides, A° generates a compact semigroup and is the subdifferential
of the proper, convex and lower semicontinuous function ¢, ») : H — RU {400}
defined by

D 1
[ — | VulP @ dz —|—/ |u p""(:”)dx}, ifue X,
2 ps(@) 2 ps(@)

400, otherwise.

gops (m) (u) = (2.4)

Moreover, they proved in [30] that the system (1.1) has a strong global solution (us, vs).
Using the following elementary assertion we can obtain estimates on the operator
only by considering two cases.

Proposition 2.5 ([1]). Let A, u be arbitrary nonnegative numbers. For every positive
a? 57 « 2 /67
2 | (A +p)f ifA+p>1

Then it is easy to show that for every u € X

N
X, i [lul

Xs<1a

% (2.5)
¥, i flullx, = 1.

1
(Afu,u)x+ x, > {||u

27 | |lu

From now on, we will denote X, := WP=()(Q), Y, := WhHa:()(Q), X := WhP(Q)
and Y := Whe(Q).

It is a known result that X,,Y; C H with continuous and dense embeddings
(see [14,25]). Moreover, it is easy to see that

lusllzr < 4090+ 1)*usllx. (2.6)

for all us, € X, and for all s € N.
By [22], we obtain that if Rs(ug, vo) is the set of all solutions of (1.1) with initial
data (ug,vg), then
Gy = U Rs(ug,vo)
(uo,vo)EHXH
is a generalized semiflow in H x H (which is called the generalized semiflow associated
with (1.1)), i.e., G is a family of maps ¢ : [0,00) — H x H satisfying the conditions:
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(H1) For each z € H x H there exists at least one ¢ € G, with ¢(0) = z.
(H2) If ¢ € G, and 7 > 0, then ¢ € G, where ¢7(t) := p(t + 7) for all t € [0, c0).
(H3) If p,1 € Gy, and ¥(0) = ¢(t) for some t > 0, then 6 € G4, where

o o(T) for 7€ [0,1],
b(7) {1/1(715) for 7€ (t,00).

(H4) If {p;}52; C Gs and ¢;(0) — 2, then there exists a subsequence {¢,} of {¢;}
and ¢ € G, with ¢(0) = z such that ¢, (t) — ¢(t) for each ¢t > 0.

Let us review some concepts from [21]:
Definition 2.6. Let G be a generalized semiflow in a complete metric space M.

(a) G is bounded dissipative or B-dissipative if there is a bounded global B-attractor
for G.

(b) G is point dissipative if there is a bounded global point attractor for G.

(¢c) We say that G is p-dissipative if there is a bounded set By such that, for any
v € G, p(t) € By for all sufficiently large t.

(d) G is eventually bounded if for any bounded set B C M there exists 7 = 7(B) > 0
such that v (B) := U,~,{¢(t); ¢ € G with ¢(0) € B} is a bounded set in M.

Remark 2.7. The following implications hold for a generalized semiflow G in a com-
plete metric space:

G is bounded dissipative = G is point dissipative = G is ¢-dissipative.

Moreover,
G is bounded dissipative = G is eventually bounded.

Definition 2.8. A generalized semiflow G in a complete metric space M is asymp-
totically compact if for any sequence {y;} C G with {¢;(0)} being a bounded set
in M, and for any sequence {t;}, t; — oo, the sequence {p;(t;)} has a convergent
subsequence.

According to Theorem 9 in [21], in order to assure the existence of a compact
invariant global attractor for (1.1), it is enough to guarantee that the generalized
semiflow G, defined by (1.1) is asymptotically compact and ¢-dissipative.

In this work we denote

A% (w) = _diV(DS|vw|ps(z)—2vw) + |w|ps(z)—2w’
and analogously
B (w) 1= —div(D,|Vw|% @ 2Vw) + [w]% )2y,

S*® the semigroup generated by A° and T, the multivalued semigroup defined by Gs.
In the next result we will prove that the generalized semiflow G, defined by (1.1)
is bounded dissipative and so, eventually bounded and ¢-dissipative (see Remark 2.7).
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Theorem 2.9. Let F,G : H x H — P(H) be bounded, upper semicontinuous and
positively sublinear maps. Then, there ezist a bounded set By in H x H and ty > 0 such
that for any ps € G, @s(t) € Bs for all t > to. Thus, in particular, the generalized
semiflow Gy defined by (1.1) is bounded dissipative.

Proof. Let s = (us,vs) € Gy a solution of (1.1). Then there exists a pair
(fs,9s) € Sel F(us,vs) x Sel G(us,vs), fs,9s € L'(0,T;H) for each T > 0 such
that ug, vs satisfy the problem

s+ A%(us) = fs in (0,T) x Q,

9 + B*(vs) = gs in (0,7) x Q, (2.7)
us(0,2) = ugs(x), vs(0,2) = vos(x) in Q.

Multiplying the first equation by us we obtain
Ju(t) s _
(Fp 2 us®) (A (ws(0)us() = (Fol0),us(B)

Let I := (0,T), I1s :={t € I : |lus(t)||x., < 1} and 5 := {t € I : |lus(t)||x, > 1}.
Then by (2.5)

1 .
th” g( )” 2 +||us( )H <fs(t),us(t)>H 1ft€]137
and
Ld 2 1 Py .
5 7 lus Ol + QEHuS(t) %< {fs(),us(t)) g it € D,
Thus,
.
1d e [T OO reh,
ld, .. B s ] |
2 T I+ O us)r it E I,

where o := 4(|2| + 1)? and ¢ := 5.
In an analogous way, multiplying the second equation in (2.7) by vs; we obtain

+ .
1d —Zelos ()5 + (gs(®)vs ()i if t € L1
S los@lF <4 o 0 : -

2dt —Q%S_Hvs(t) 5 Fgs(t),vs(t))ym ift € Iy,

where I1, := {t € I:+||vs(t) sy, = 1}
Now, let rs := iz_ > 1 and 7/, such that % + %, =1 then by Young’s inequality

- 1 1 +
R e Ll %

=
Tl s

s (t)

and so
o

—Oﬁllus(t)

+ g - (2
(- Tl - ). (2.9)

aPs r
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Using (2.9) in (2.8) we get

|| SN < —Collus @I + (fs(t),us(®))u + C1 forall t € T = (0,T),

2dt

where Cy := )L and C; :=

Pap

n
In an analogous way, taking 7y := Z:, > 1 and 7, such that % + %, =1 we get

5 losOE < =Callos 15 + (9:(8),0s(E))mr + C1 - forall ¢ € T = (0,7),

where Cy = Cy = a )L and Cy :=
Thus, we obtain

{;ﬁwwm%g—&m&m
Ly ()13 < —Collvs ()%

where Cy, Co, Cy, C are positive real numbers depending on |, L, p,q.
We can suppose, without loss of generality that p; > ¢; . If p; = ¢; we obtain

qoﬂ

<fs( )7us(t)>H+Ola
+(gs(t), vs (D) + Ch,

(2.10)

a similar expression as (2.10) with ¢, in place of p; . If p; > ¢, taking 6, := Zé > 1,
0, such that 5- + 9, =1 and € > 0 we have
t 95 _ € t as < 1 s t I
||Us()H—gHus()H_@+9:€ ()5
and then 0 C
- . ; -
~Callus O < - [57 — Callus (I |-
S
So, we have that
sl <~ + GOm0 Ot S
sarllvs @l < —Cz\lvs(t)\lﬁ +(gs(), vs(8)) i + Ch.

Now, we use that (F,G) is positively sublinear (see Definition 2.4) to estimate
(fs(t),us(t)) g and (gs(t),vs(t)) . To do this, we have to consider the following three

cases:

Case 1. If Jus(t)||gr < mo and ||vs(t)|| g < mo then as F' and G map bounded subsets
of H x H into bounded subsets of H there exists C' > 0 such that

(fs@), us()m < || fs(®)llallus (@)l < Cmeo

and
(95(t),vs(O))m < [lgs(@)[[[vs(@)]] < Cmg.
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Case 2. If |lus(t)||;r > mo or ||vs()|| g > mo and {fo, us(t)) < 0 and (go, vs(t)) <0 for
all fo € F(us(t),vs(t)) and for all go € G(us(t),vs(t)) then (fs(t), us(t))g < 0 and
(9s(t),vs(t))m < 0.

Case 3. If |Jus(t)|lg > mo or |Jvs(t)||g > mo and (fo,us(t)) > 0 or (go, vs(t)) > 0 for

some fo € F(us( ), vs(t)) or for some go € G(us(t),vs(t)) then, for € > 0, K, := qg > 1

and vy =

(’)
(Fol®),us(®) < £ (0) s (B)]
“allus @3 + Zblus Ol los@lla + Zellus®ll

IN

1 /a K 1 - b (¢5) (
< — | = ks s t qs (7) Vg qs
<2 (O @l + = (0) 7 el
_ - 1 ey (@) 1
oz Ol + = (0) T+ e Tl
s (g5 ) \€ s
2 4 2 - e 1 (a5 /
= (2t 4+ 2 Vg + < (2" It
s Qs €(qs)

GO 5O
< (e = e o)

S

GO ) 2O om0

S S

= o)
e
H v S

S

H

and in an analogous way

(g(0).0:(0) < (ZF + 2t ) (1)

qs s

O RO )

S

qs
H

a , €°
i+ llus(t)

S

Therefore, in all cases we get

2 a5 2 - - e -
(ol®)us(®) < (=T + =€ ) lus®F + IO +moC

S S

O O RO

S

and

(00 0.0) < (=5 + = ) Ol + )

S

RSO O O]

q};_ + moC
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Using the last two inequalities in (2.11) we obtain

Cs0, 2 4 2
Sl < (- 2+ 2t 4 e ) )]

e g qs
+ sl + Cs(e, s)
S
and
1d 2 as 2 -
U G ==l | LXCI
EVS _
+ —lus()IF; + Cale, s),
where
1,1 1 by (@) vs 1 /a\Fs 1 ey (a7)
Gyles) =m0+ [ (o= (2) )+ (%) )
3(€,8) = moC + ooy e Jr’f; ; +(qs—)’ ;
0.C,
+Cy + 0269566;
and

autes) =maC+ [ (L (4 ) L () (D) ] e

s €

(g5 )

S

Thus, adding the last two inequalities we obtain

s (Ol + 01

C0, 2 g 2 - ¥
< (-2 = =+ w0
€7 qs ds Vg

qs
H

vs

2 2 -
( Co+ =% + e +€V )||vs(t)||;{; + Cy(e, s) + Cale, s).
qs s

As e > 0 is arbitrary, we can take ¢y sufficiently small such that

w2 - e O Co6 .
—€” — €' 0 =2 and 29 5> (.
QS QS Vg 2 EOS

Then

L (a0l + les013) < ~Cs (IO + lea)

DN | =

%) + Cols),

where C5 := Cz > 0 and Cgs(s) = Cs(eo, s) + Cy(eg, s) > 0.



548 Jacson Simsen, Mariza Stefanello Simsen, and Petra Wittbold

Thus,

DN | =
SN

s

(sl + oe@1) < =05 (lus@IEF + oa@I5F) +C
55 (@l + s ®F) T+ Colo)
275

Therefore, the function ys(t) := ||us(t)||% + ||vs(t)||% satisfies the inequality

2C! a5
O ys(t)E

2%

yu(t) < —

+206(S), t > 0

From Lemma 5.1 in [33] we obtain

-1
2/q; D
o) e (5
6\S 5 qs 2
() < 5 (L 1)y .
v = | ¢, +{2qs/z<2 )]
245 /2
So, considering
-t
o\ 245 s
- 206(8)2‘15 /2 I n 2C5 £ _ ( 92 1)
s 2C5 20: /2 \ 2
and to = 1 we have |lus(2)]|3, + [|vs(t)[|3 < 75, for all t > . O

Corollary 2.10. Gy is asymptotically compact.

Proof. Let {¢;} C G, with {¢;(0)} bounded in H x H, and {¢;(t;)} a sequence
in H x H with t; — oo. We want to show that {¢;(¢;)} has a convergent sub-
sequence. By definition ¢; = (uj,v;), ¢;(0) = (u;(0),v;(0)) € H x H. As
t; — oo we can suppose t; > 1 for all j € N and as G, is a generalized semiflow
o; = <p§-j71 = (u;-jfl,v;frl) € G;. Then for each j € N there exist f;, g; € L'(0,1; H),
fj € Sel F(uzj_l,v?_l) gj € Sel G(u t'_l,vz"_l), where (u;’_l,v;t.j_l) is the solution
of (2.7) on (0,1) x Q.

Let K1 = {f;,j € N}, Ky = {g;,7 € N}, M(K,)(t) = {uéj_l(t),j € N} and
M(K»)(t) = {U;rl(t),j € N}, t € [0,1], and {S*(t), t > 0} the compact semigroup
generated by A° on H.

Now, let h > 0 be such that 1 — h € [0,1]. We define T}, : M(K;1)(1) — H by

setting u (1) — S*(h)ul ' (1 - h).
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It is easy to show that K is a bounded set in L'(0, 1; H) and is uniformly integrable
in L'(0,1; H). As G, is eventually bounded, {¢;(0)} = {p,(t; — 1)} is a bounded
subset of H x H if j is big enough. Consequently, M (K;)(1 — k) is a bounded subset
of H. So, T}, is a compact operator. Moreover, we have

1
| S5y ™M (1 = h) —ub A1) | < / | £5(s) Il ds, ¥ 5 € N.
1—h

So we have that limy_,07y = I, uniformly in M (K;)(1). Therefore the map
I:M(Ky)(1) = M(K;)(1) is a compact operator and then, M (K7)(1) is relatively
compact in H. The same arguments show that M(K>)(1) is relatively compact in H,
therefore {;(t;)} has a convergent subsequence in H x H. O

We conclude that G4 has a compact invariant global attractor As. The global
attractor A is unique and given by As; = Upe sy ) ws(B), where B(H x H) means
the bounded subsets of H x H. Furthermore A, is the maximal compact invariant
subset of H x H, and is minimal among all closed global attractors of bounded sets.
We also have that Ay is the union of all complete bounded orbits in H x H (see
Theorem 15 in [21]).

3. UNIFORM ESTIMATES

In this section we prove uniform estimates in H x H and X x Y for the solutions
of (1.1).

Lemma 3.1. If (us,vs) is a solution of (1.1), then there exist positive numbers rq
and a constant to > 0 such that ||(us(t),vs(E)) || mxm < ro, for each t >ty and s € N.

Proof. The same arguments employed in the proof of Theorem 2.9 can also be applied
here, but now, in order to obtain uniform estimates, we use from the beginning the
hypothesis p; > p, g5 > q, p& < L, ¢ < L for all s € N, and we obtain

S

1d

§%Hus(t)||§1 < =Collus ()5 + (fs()sus(t))m + C1 forallt € I =(0,T)
and

1d 9 ~ -

2 g lsOlE < =Coallvs®)lly + (95(8), vs()) + C1 forallt € I=(0,T).

saellus @I < —CollusOlf + (o), us(8)a + Ch,
3 it i < —Collvs@®NF + (95(t), vs())a + Ch,

where Cy, Cy, Cy, C, are positive real numbers depending on ||, L, p, g. Now, repeating
the procedure with 6 := p/q, Kk := q/2, v := q/q' we obtain the result. O
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Remark 3.2. The constants rg and ¢y in Lemma 3.1 are independent of the initial
values and can be chosen uniformly in s € N.

Corollary 3.3. There exists a bounded set By in H x H such that Ay C By for all
s e N.

Lemma 3.4. If (us,vs) s a solution of (1.1), then there exists a positive number
K = K(ugs,vos,to) such that || (us(t),vs(t)||mxma < K, for all t € [0,to]. If the initial
values are all in a bounded set of H x H, then K is uniform in s and we have that
[(us(t),vs()|lpxa < K, for each s and for each t € [0,to]. In this case we can
consider tg = 0 in Lemma 3.1.

Proof. As (us,vs) is a solution of (1.1), there exists a pair (fs, gs) € Sel F(us,vs) X
Sel G(us,vs), fs,9s € L'(0,T; H) such that us, v, satisfy the problem

%qLAS(us):fs in (0,7) x Q,

%vs + B*(vs) = gs in (0,7) x Q, (3.1)

us(0,2) = ugs(x), vs(0,2) = vos(x) in Q.
Then, multiplying the first equation on (3.1) by us(t) and the second one by wvs(t),
summing up and using that (A%(us(t)), us(t)) > 0 and (B*(vs(t)), vs(t)) > 0 it follows
that

1d 9 9

577 sz + los@llz) < (o), us(6) + {g5(6)), v5(6))-

Now, we use that (F,G) is positively sublinear to estimate (fs(t)),us(t)) and
(gs(t)),vs(t)) and we obtain
1d
2dt
where (' is a positive real number depending on a, b, c and C5 is a positive real number
depending on my.
Integrating (3.2) from 0 to t <ty we obtain

s (£)113; + [lvs ()17

(s + lvs@IF) < Cr (lus@®NF + llvs(@)IF) + Ca, (3-2)

t
< (lluosllF + [lvosI7) +/201 (lus(DF + los(D)77) d7 + 2Cato.
0

By the Gronwall-Bellman inequality
lus@F + llos(OlI7r < (luosllzr + [lvos|l7r + 2Cato) €210 for all t € [0, o],
and the assertion of the lemma follows. O

Lemma 3.5. If ¢s := (us,vs) € Gy, then there exist positive constants K > 0 and
t1 > tg, independent of s, such that

[es(®)llx.xv, = llus(@)llx, + lvs(®lly, < K

for every t > t1 and s € N, where ty is the positive constant in Lemma 3.1.



Reaction-diffusion coupled inclusions with variable exponents and large diffusion 551

Proof. Take t; > tg. As (us,vs) is a solution of (1.1) there exists a pair
(fs, 9s) € Sel F(ug,vs) x Sel G(us,vs), fs,gs € L1(0,T; H) such that ug, vs satisfy the
problem

Qus + A%(us) = fs in (0,T) x Q,
avé + B%(vs) =gs in (0,T) x Q.

Considering ¢, () as in (2.4) we obtain

Gno0x(0) = (90, 0. G20

— (1.0~ 0. 50 - 10+ £.0)

dus |17 dus
—-|rw-Gew| +(r0-GE0.L0)
H
for a.e. t in (0, 7). Therefore,
Oug

d 1 ‘

e ®) +3 |10 =G|

Now by using Lemma 3.1 and the fact that F' and G are bounded, there exists a positive
constant Cy such that || fs(¢)||lg < Cy for all £ > to and s € N. In particular,

d 1
o (w(0) S SO < 3G foralltzt, seN. (33)

By definition of the subdifferential we have the following inequality

Ppa () (Us(t) < (Dpp, (@) (us (1)), us (1))

()t >> {9y, o (us(5), us (D))

= (fs(t), us(t))
< sl llus@®l e < Coro (3.4)

for all t > tp and s € N. Let t > tg and r := t; — tp > 0. Integrating (3.4) from ¢
to t 4+ r we obtain

5 g7 11 OlF + @y @) (us (1) < <

t+r
1 1
/ ©p. () (us(T))dT < §||us(t)||§{ + Coror < 57% 4+ Coror =: A (3.5)

t

for all s € N. From (3.3), (3.5) and the Uniform Gronwall Lemma (see [33]), we obtain

s

Pps () (Us (t)) < +

r
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for all t > ¢; and s € N. Using (2.4) we obtain |Jus(t)||x, < K for all ¢ > t; and
s € N for a positive constant K7. In a similar way, we conclude ||vs(t)]y, < Ko for all
t > t; and s € N for a positive constant K5 and the assertion of the lemma follows. [

Corollary 3.6.

(a) There exists a bounded set Bj in X x Yy such that A C Bj.
(b) Let (us,vs) be a solution of problem (1.1). Given t1 > 0 there exists a positive
constant ro, independent of s, such that

l[us (@l x + lvs(B)lly <72,

for allt >t and s € N, where X = WLP(Q) and Y = WH4(Q).
(c) A:=U,enAs is a compact subset of H x H.

Lemma 3.7. If (us,vs) € Gs and there exists C > 0 such that |lugs||x, + [[vos
for all s € N, then we have that there exists a positive constant K such that

v, <C

I(us(t), vs () || x,xy, < K for all s € Nt € [0,t1].

In this case we can consider t1 = 0 in Lemma 3.5.

Proof. Given t; > 0, if (us, vs) is a solution of (1.1) then multiplying the first equation

by 85; (t) we have that

Oug
H s (1)

1+ <As(us(t)), a(,;f(t)> = <fs(t), 88113 (t)> :

As (A%(us(t)), 2= (1)) = L0p. () (us(t)), we obtain
2
d 1
- < Z 2
o G ) < SO

e

and then p .
2
21 %rs @) (s(t) < SO
Using Lemma 3.4 and the fact that F' is bounded we conclude

d
%gops(z)(us(t)) < Cy foralltel0,t],s €N,

where C7 > 0 is a constant. Therefore, integrating the equation above from 0 to 7, for
7 < t1, we obtain

©p. () (s (7)) < @p. () (u0s) + Crt1 for all 7 € [0,41],s € N.
In a similar way, we obtain
©q. () (s(T)) <@g, (2)(v0s) + Caty for all 7 € [0,%1],5 € N,

where (5 > 0 is a constant and the result follows. O



Reaction-diffusion coupled inclusions with variable exponents and large diffusion 5953

Corollary 3.8. Let (us,vs) be a solution of (1.1) with initial value ugs, vos. If there
is C > 0 such that ||uos|| x, + ||vos|ly, < C for all s € N, then given t1 > 0 there exists
a positive constant Ry such that

lus (@)l x +llvs(®)lly < Ra,

for allt € [0,t1] and s € N, where X = W1P(Q) and Y = WhH1(Q).

4. THE LIMIT PROBLEM AND CONVERGENCE PROPERTIES

Our objective in this section is to prove that the limit problem of problem (1.1) as
D, increases to infinity and ps(:) = p > 2, ¢s(*) = ¢ > 2 in L>°(Q) as s — oo is
described by an ordinary differential system. Firstly we observe that the gradients of
the solutions of problem (1.1) converge in norm to zero as s — oo, which allows us to
guess the limit problem

U+ op(u) € Jf(u,v),
b+ 6y (v) € Glu,v), (4.1)
u(0) = ug, v(0) = vy,

where ¢, (w) := [w|P2w, F := Faxg, G = Grxp : R x R = P(R) if we identify R
with the constant functions which are in H, since €2 is a bounded set.

The proof of the next result follows the ideas of [24], but some adjustments are
necessary for this variable exponent case. To obtain the limit system we first prove
the following theorem.

Theorem 4.1. If (us,vs) s a solution of (1.1), then for each t > ti, the
sequences of real numbers {||Vus(t)|m}sen and {||Vvs(t)||m}tsen both possess
subsequences {||Vus, (t)||n} and {||[Vv, (t)||g} that converge to zero as j — oo, where
t1 is the positive constant in Lemma 3.5.

Proof. Let T > 0and t € (t1,T). Let (us, vs) be a solution of the problem (1.1). There-
fore, there are fs,gs € L1(0,T; H), with fs(t) € F(us(t),vs(t)), gs(t) € G(us(t),vs(t))
a.e. in (0,T), such that (us,vs) is a solution of the system

due 4 ASug = f, in (0,7),
b | B = g, in (0,7), (4.2)

us(0) = ups, v5(0) = vos.

Taking the inner product of the first equation of (4.2) with wus(7), yields

1d

il + Do [ 1900 @zt [ Jun(oP @z = (), (). @43)
Q Q
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Analogously, we have that

@) gy = (g4(1),vs(1)).  (4.4)

1d
Aﬁva%+D§/W%v)
Q

- g5 ()
5 7 dx—|—/\113(7')
Q

Now by using Lemma 3.1 and the fact that F' and G are bounded, there exists a positive
constant Cy such that ||fs(7)||g < Co and ||gs(7)||g < Cp for all 7 > tg and s € N.
Thus

(fs (1) us(T)) < [ fs@®)lallus(r)]ar < Coro
and
(95(r); 05(7)) < lgs ()l [[vs ()l er < Coro.
Then, adding the equations (4.3) and (4.4), we obtain
1d
5 22 (sl + los ()1

-i-Ds/|Vu8(7—)|1)s(z)dx+DS/|VUS(T)|qS(x)dx
@ Q

+/|us(7)|p5(x)d$+/|US(T)|qS(I)d$ < C3, ae. in (t,T).
Q Q

As

a5 () g >0,

e
Q

we have in particular that

Ps (@) go 4 / lvs(T)
Q

2 (I + () 1)

(4.5)
+ D, / Vs (7)|P @ dax + Dy / Vg (1)|% @ dz < Cs,
Q Q

a.e.in (¢1,7).
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Integrating the inequality (4.5) from t; to T, we obtain

2 (has T + (1)

T T
+ D, / / Vs (7)|P* @ dedr + D, / / |V, (T)
t1 Q t1 Q
T

1
< [ Cadr+ 5 (lunttn) By + a1
ty

(@) dydr

< C3T 4 ¢ = k(T).

In particular

and

which implies

T

1
// Vs (7)|Ps @ dadr < D—k(T) —0 ass— oo
t1 Q °

Therefore there exists a subsequence s; such that

[ 1V,

Q

Ps (I)dﬂf —- 0 as j — 00, T-a.e. in (t17T);

and so there exists a subset J C (¢1,7T) with Lebesgue measure m((t1,7)/J) = 0 such
that

/ |Vus, ()

Q

Given t € (t1,T), we pick one v € J witht; <v<tandlet h=t—v. Let e >0
and jo = jo() > 0 be such that if j > jo then

/ |Vus, (v)
O

Poi@ gy 0 as j — oo, forall 7 € J.

po; (@) gy < £
T < I

We have that

d

d )
%@psj (@) (us; (v + 7)) = <8appsj () (us; (v + 7)), Eusj (v + T)> a.e. in (0,7).
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Therefore

Dy
Vs, (v + h)|P (”)dx—k/ s, (v + h)|Pei i@ dy
/p%() () mx)|J< )P

Q

1

Vug psi(z)dw—/ius, V)|Poi ) g
\ (V)] J psj(x)| ; (V)

pe, () (Us; (V + B)) = ¢p () (s, (V)

d
27 Ppe, ) (s, (v £ 7)) dT
d
8@105 () (us; (v + 7)), 2 Us; (v+71)) dr
Fo 0+ 7) = L (04 7), g, (1) ) d
S '7— s .
J 7- J T dT .7 T T
<fsj usJ (1/+7')> dr

O/h< us, (v +7), Cz_us_j(z/+7)> dr

h
1 1 []d 2
<= . Ldr — = | || ==us,
_2/W&0Hwﬂmd7 5 [ | e
0 0

dr

H

IN

h h
1 1 1
f/llfsj(u+7)||§1 dr < f/cng = ~C2h.
2 2 2

0 0

Thus,

ps]- (x)dm

[ 2V, v+ 1)
: us. (Vv
a psj(x> !

D.. 1
< 5|V, (v psj(w)der/iusv v)|P
!p%@ﬂ ) pruﬂ )

1
@ dg 4 5Coh-
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Therefore,

/ Vs, (v + h)[P @ dz
Q

<3 [ 1vu,0)
Q

So, using (2.3) and Lemma 3.5

L
2D

LC2h

Ps; (m)dﬂf + 5D

Ps; (‘”)dx +

|usj (V)

N
7

/W%@+W%@w
Q

L LCZ|IT —t
p&](m)daj+2D KL+ CVO2|D l|’

J

<3 [ I9u,@)
Q

where K is the positive constant which appears in the Lemma 3.5.

Thus, choose j; = j1(¢) sufficiently large such that
L LC2|T — t,|

— gL y==0c = 2

o0, Nt Tap, - <

whenever j > j; and, moreover, we consider jo = jo(¢) = max{jo,j1}. For j > js
we have

[ 9 O = [ 902 =
Q Q
L L LC3|T — t1
<= ()P B gy 4 = L4 2012 T
B 2/ Vs, et g =K+ 5D,
Q
< = + Z= €
22 7

Thus, for j > 7

P @y < .

. Ps; p;rj
min[[ Vs, (O] 1V, O} < [ 19,0
Q

As ps; (1) > 2, [|Vus; (1)l < 2(1Q2] + 1)[[Vus, (1)

ps, (x) We obtain
| Vus,(t) [— 0 as j — oo.
Analogously we conclude that [| Vv, (£) |z — 0 as j — co. O

Proposition 4.2. If (us,vs) is a solution of problem (1.1) in (0,%1), then for each
t € [0,t1], the sequences {||Vus(t)|lp}tsen and {||Vvs(t)|lq}sen remain bounded as
s — 0o whenever the initial values will be such that ||uos|| x, +||vos|ly, < C foralls € N.
If the initial data are equal to a same constant, i.e., if (us(0),v5(0)) = (up,vp) € RxR
for each s € N, then for each t € [0,t1], the sequences of real numbers {||Vus(t)|p}sen
and {||Vus(t)||q}sen converges to zero as s — 0o, respectively.
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Proof. In fact, let (us,vs) be a solution of problem (

1.
fogs € LY0, 13 H), with £,(t) € Flus(t), vs(t)). gt
such that (us,vs) is a solution of the system:

1) in (0, ¢1). Therefore, there are
) € G(us(t),vs(t)) a.e. in (0,t1),

dhe t ASug = f, in (0, ),
d;ts + sts = Js in (07 t1)7
us(0) = ups, v5(0) = vos.
Taking the inner product of the first equation with 6’“(” , we obtain
ous(t)||* d B Ous(t)
|29+ Fonrtmn = (0. 25
Ous(t
<t | 252
Ous(t )
< — .
< sleo+ 5[ %52
In particular,
d 1 9
< = . 4.
oo s(0) < SIS0 (16)

Since y, < C for all s € N, using (2.6) we have that the initial values
are in a bounded set of H x H. Using Lemma 3.4 and the fact that F' and G take
bounded sets of H x H in bounded sets of H, it follows that there exists a positive
constant C such that || fs(¢)||% < C for allt € [0,¢1] and s € N. Computing the integral
from 0 to 7, 7 € [0,¢1] in (4.6), we obtain

1
Pp. (@) (Us(T)) < ©p, () (u0s) + §Ct1

for all 7 € [0,¢1] and s € N. Therefore,

D / |Vus
< D / |VUOS

for all 7 € [0,¢;] and s € N. As a consequence,

/\Vus(r) dx+</|u0
o)

for all 7 € [0,¢;] and s € N. Analogously we prove that

L
/|Vvs(7)|qs(w)d:r§ §/|Vvos Ds(/|voS
Q Q Q

Since ps(z) > p, ¢s(x) > q and |Jugs||x, + ||vos|ly, < C for all s € N the result follows
by using (2.3). O

1
ps(w)d$+/ us (7)|P*®) dg
2 ps(x)| ™)l

Ps m)dac—l—/ U
pala) "

Q

MWW%C%

L
p-@(z)d < —
T=9

m@m+m0

qs(z)

s ).
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Theorem 4.1 confirms that the equation (4.1) is a good candidate for the limit
problem.

Lemma 4.3 ([23]). The problem (4.1) has a global solution.

Theorem 4.4 ([23]). The problem (4.1) defines a generalized semiflow G which has
a global B-attractor A>.

The next result guarantees that (4.1) is in fact the limit problem for (1.1),
as s — 0o.

Theorem 4.5. Let (us,vs) be a solution of the problem (1.1). Suppose that the
initial values (us(0),v5(0)) = (uos, vos) — (%o, Vo) € R x R in the topology of H x H
as s — 00. Then there exists a solution (u,v) of the problem (4.1) satisfying (u(0),v(0))
= (uo,v0) and a subsequence {(us,,vs,)}; of {(us,vs)}s such that, for each T > 0,
us; — u, vs; — v in C([0,T]; H) as j — oo.

Proof. Let T' > 0 be fixed arbitrarily large. Let (us,vs) be a solution of the problem
(1.1) with (us(0),vs(0)) = (ugs, vos) = (uo,v0) € RxRin H x H as s — co. Therefore,
there are fs,gs € L*(0,T; H), with

fs(t) € Flus(t), vs(t)), 95(t) € Glus(t),vs(t)) ace. in (0,T),
and such that (us,vs) is a solution of the system (4.7) below:

G+ Aus=f, in (0,7),
d(;ts + Bfvs = gs in (OaT)v (47)

us(0) = ups, vs(0) = vos.

We denote I(ugs)fs(-) = us(-) and I(vgs)gs(-) := wvs(-) and also denote by
I(ug) fs(+) := zs(-) and I(vg)gs(-) := ws(-) being the corresponding solutions of the
problems

dzs
T4 A%z = ER)
ai tA=Z =] (4.8)
25(0) = wy,
and
d:j,is + Biws = gs,
ws(0) = vy,
respectively.

Taking the inner product of the first equation in (4.7) with us; and computing
the integral from 0 to ¢, ¢ < T, we obtain

3 @) I3 5 o By + [ (A0, (b

0
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As {ugs} is a convergent sequence, we have that there exists a positive constant R
such that || ugs [|%< R?. Thus,

t

R? + /(fs('r),us(T»d'r.

0

1
5 lus(®) <

Using the hypothesis that the couple (F,G) is positively sublinear and Gronwall’s
inequality we obtain that there exist positive constants «, 8, v and C' such that

[us(t) [ < C+7T+/[0¢ [ us(7) Il +8 || vs(7) |lm]dr.
0

So, there is a positive constant M independent of ¢ € [0, 7] such that

t

| us(t) < M+/[a [us(r) ler +8 || vs(7) || m]dr.
0

Analogously, there exists a positive constant M independent of ¢ € [0, T] such that

[[0s(8) [ler< 1\7+/[ﬁ s (7) [l +a || vs(7) [ ]dr.

Adding these two inequalities and denoting by N := M + M and p=a+f
we have

t

s (@) [l + ] 0s(t) < N+p/[|| us(7) |l + [ vs(7) [[mldr
0

and so it follows by the Gronwall-Bellman inequality that
s (t) |z + 1 vs(t) < NeT,

for all t € [0,T] and for all s € N.
As F and G map bounded sets of H x H into bounded sets of H, it follows by the
inequality above that there exists D > 0 such that

| fs@) [lg< D and | gs(t)|lu< D forallte[0,7] and s € N. (4.9)

Consider K := {fy;s € N}, K = {g;s € N}, M(K) = {z;s € N} and
M(K) := {ws;s € N}. It follows by (4.9) that K and K are uniformly integrable
subsets of LY(0,T; H).
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By using compactness results we obtain that M (K) is a relatively compact set
in C([0,T]; H) and so there are z € C([0,T]; H) and a subsequence {z, } of {zs} such
that z,, — z in C([0,T]; H).

As each z,; is a solution of (4.8) in (0,7), then by Proposition 3.6 in [7],
zs,; verifies

3 2@ =0 P< 5 1O =017+ [, () — oz (r) = O)dr (110)

14

for all 6 € D(A%) c W'P=(Q) c H, y; = A%(f) and for all 0 < £ < ¢t < T.
Analogously, we can show that there exists w € C([0,T); H) and there exists
a subsequence {wy, } of {ws} such that w,, — w in C([0,77]; H), verifying

3 10 = 0IP< 5 1 ws(® =01+ [{g,(r) =y, () ~O)dr (@11

L

for all @ € D(B%) c W )(Q) € H, y; = B*(0) and for all 0 < £ < t < T.

As || fs;(7) |a< D and || g5,(7) [|[g< D for all 0 < 7 < T and for all j € N,
we conclude that there exists a positive constant D such that | fs; lo20,mm) < D and
I s, |20,y < D, for all j € N.

As L?(0,T; H) is a reflexive Banach space, there are f,g € L?(0,T; H) and sub-
sequences, which we do not relabel, {f,,} and {g,,} such that f,, — f and g5, — ¢
in L(0,T; H). Consequently f,, — f and g,, — g in L'(0,T; H).

Statement 1. us; — z and vs; — w in C([0,T]; H). Moreover, f(t) € F(z(t),w(t))
and g(t) € G(z(t),w(t)) a.e. in [0,T].
Indeed, let ¢ € [0,T]. We have

[ s, (8) = 2(8) [ <I| ws; () = 24, (8) [l + || 255 (8) = 2(2) || -

Therefore,
sup || s, (t) = 2(t) |z < sup | I(uos,) fs, (t) = I(uo) fs, (t) |m
tel0,T) te[0,T]
+ sup || z,(t) — z(t) |u
t€[0,T)

<[l uos; —uo |l + sup | 25, (&) = 2(t) [a— 0
telo,T

as j — 0o. Thus u,; — z in C([0,T]; H) as j — co. Analogously we show that vy, — w
in C([0,T]; H) as j — 4o00. Then, by Theorem 3.3 in [13], f(t) € F(z(t),w(t)) and
g(t) € G(2(t),w(t)) a.e. in [0,T7.

Now consider § € R C H and let h := ¢,(6) € R C H. We consider

y; = A% (@) - *diV(Dsj |v§|1)sj (x)—2v§) + |§|st (z)-2g
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Note that D(A%) D R for all j € N and since 6 is a constant function V@ = 0,

so y; = |07 720, By (4.10), we know that
1 1 /
3 12O =TI <5 120 = 1+ [ () = vy, () = Dpir
14
1 t
— 5 a0 =0+ [0 =Tz () ~Bar (@12
)4

t

+ /@, Yjs Zs; (1) — 0)dr

14

for all 0 <1<t <7 and for all j € N. We claim that [} (h — y;, 2, (7) — O)dr — 0 as
j — oo. In fact, for = 0 this is immediate and if § # 0 then for each 7 > 0

By, (0 = B)| < [ (|16 = 7)o ()l + [ | [P = 6177
Q

Q

Since ps;(z) — p in L>(Q) as j — oo it follows by the Dominated Convergence
Theorem that
/ o -

On the other hand, using the Mean Value Theorem we obtain

p€ :E)

dx — 0 as j — oo.

J (8 = i@ )y (e < [ 7 1B ) ), ()
Q

Q

where p < 7(s;, ) < ps; (). Thus, considering p;_(-) such that ﬁ(z) + m =1 for

all z € 2, we have

[(er-@

Q

< Ips, — pllos / B4z, (1) da

((s5,2)+1)p, . (2) 1
< 1ps. = pllos g)(7 (e ) d .
< llps; -l Ul’sj( 5191 +!psj(x)z]<7)

Q

= (1(sj,x)+1 /5 x 1
< [|ps, ploo[/m( (s5,@)+1)p. ( )dx+§/|zsj(7-)
Q Q

psj(@)—1 D |25, (T)|dx

Ps; (L)dl.‘|

Ps; (w)d:c] )
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Ps; () gy < C for

By Lemma 3.7 there exists a constant C' > 0 such that [, [z, (7)
every 7 € (¢,t) and j € N.

On the other hand, as p+1 < 7(s;,7) +1 < p,; () +1 < L+1and 1 < g, (x) <2
we obtain [, |§|(T(Sj’w)+1)psj @) gy < € for all j € N. Thus, considering C := C+C > 0,
we have

J(a

Q

Po; @)=Y 1 (P)|da < ||ps. — plleeC — 0 as | — 00,
5 Ds; =P J

and we conclude that
t
/(ﬁ—yj,zsj(T) —0)dr -0 as j— oco.
¢
Thus, taking the limit as j — oo, in (4.12) we obtain

S 120 -FP< 5100+ [ -Fatr)-Bar (@13

4
forall € R, h:= qbp(?) and forall 0 < /<t <T.
In the same way we can show that
1 1 /
5 100 = IP< 31w =01 + [ tolr) — () ~ Byar
14
forall e R, h:= (bq(?) and forall 0 </ <t <T.
Statement 2. z(t) and w(t) are independent of x, for each t > 0.

Indeed, let £ > 0. We already know that z, (t) — z(t) in H. Since z,,(0) = ug for
all j € N, then by Proposition 4.2 and Theorem 4.1 we have that ||stJ )|lg — 0

as j — oco. We also have that z,(t) € D(A%) C W' (Q) C W2(Q). Then,
by the Poincaré-Wirtinger inequality (see [8])

25, (1) = 25, Ol < ClIVzs, ()l =0 as j— o0,

where z, (t) := \ﬁll Ja 2s; ) (x) dx. Then,

12() = 2@l < Ml2(8) = 2, (D)l + 25, (1) = 25, ()|

+stj(t)—%|\g —0 asj— oo.

Thus z(t) = z(t). Analogously, we show that w(t) = w(t) and the assertion follows.

We already showed in the Statement 1 that f(¢) € F(z2(t),w(t)) and g(t) €
G(z(t),w(t)) a.e. in (0,T). Therefore f(t) and g(t) are independents on z, t-a.e.
in (0,7).
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Thus, from (4.13)

3140 =PI < 5120~ BRIl + [ [ (1) = Be(r) - 8) da
L Q

Hence
t

20 -0 + [(H7) = R)a(r) - ) dr
¢
forall d € R, h:= ¢,(f) and for all 0 < £ <t <T.
If t = £ =0, we have 2(0) = lim; o 2,,(0) = lim; o uo = ug, and, therefore,
112(0) — ] = $|up — ]*. Thus

t

2(t) ~ B + / (f(r) = B)(2(r) — B) dr

£

forall € R, h:= qﬁp(?) and forall 0 < /<t <T.
In the same way,

1 _
Sl 7P <

forall?ER,ﬁ::qﬁq(?) and for all 0 </ <t <T.

So by the Proposition 3.6 in [7], we conclude that (z,w) is a weak solution of
problem (4.1) with (2(0),w(0)) = (ug,vo), but as f,g € L*(0,T; H) we have in fact
that (z,w) is a strong solution of problem (4.1). O

Remark 4.6. The Theorem 4.5 remains valid without the hypothesis (ug,vo) € R xR,
whenever (ugs, vos) € A for all s € N, because in this case we prove, analogously as
was done in Lemma 4.1 in [24], that ug and vy are independent of x.

The proof of the next result is completely analogous as in [23], but for convenience
of the reader we give the proof.

Theorem 4.7. The family of attractors {As}sen associated with the problem (1.1) is
upper semicontinuous at infinity in the topology of H x H.

Proof. Let {(uos, vos)}sen be an arbitrary sequence with
(ups,vos) € As  for all s € Nand Dy — 0o as s — oo.

By Corollary 3.6(c), there exists a subsequence, that we still denote the same, such
that (ugs,vos) = (ug,vg) in H x H as s — oo. By [11], it is enough to prove that
(up, vp) € A%,
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Using the invariance of the attractors, Theorem 4.1 and Poincaré—Wirtinger’s
inequality, we can prove analogously to Lemma 4.1 in [24], that (ug,v9) € R x R.
For each s € N, consider t;, > s, t1 < to < ... < ty < .... By invariance
of the attractors, there are (zs,ys) € A, and solutions ¢® = (o7, ¢5) € G5 with
©*(0) = (xs,ys) such that ©*(ts) = (uos,vos) = (uo,v0) in H x H as s — oo. Note
that
©°(ts) € Ts(ts)(zs,ys) € Asy,  sEN.

By the definition of generalized semiflow, for each s € N, the translates (¢*)%* also
are solutions, and we have (¢*)!(0) — (uo,vo) in H x H as s — 00.
Using Theorem 4.5, we obtain that there exists a solution gy of the limit problem

(4.1) with go(0) = (up, vo) and a subsequence of {(Lps)tS} , that we still denote the

same, such that
(@)= (t) — go(t) in H x H as s — oo, for all t > 0.

Now we consider the sequence {¢*(ts — 1)}. Note that
P (ts — 1) € Tu(ts — 1)(zs,ys) € | JAs

which is a precompact subset of H x H, then, passing to a subsequence if necessary,
() #=1(0) = p*(ts —1) = 21 in H x H as 5 — oc.

As for each s € N, ¢? is a solution starting on the attractor A,, we obtain by the
invariance of the attractors that the sequence of initial values

P(ts—1) € A for all s € N.

Thus, using Remark 4.6 and Theorem 4.5, we obtain that there exists a solution g; of
the limit problem (4.1) with ¢;(0) = z; and a subsequence of {(cps)(tsfl)} , that we

still denote in the same way, such that
(p*)®=1 (1) = g1 (t) in H x H as s — oo, for all t > 0.
Now note that gi = go, since for each ¢ > 0, we have

g (1) = ar(t 1) = Tim ()= D( +1) = lim ()% (1) = go).
Proceeding inductively, we find for each r =0,1,2, ..., a solution g, € G* with
9r(0) = z, such that g}, = g,. Given t € R, we define g(t) as the common value
of g-(t + r) for r > —t. Then we have that g is a complete orbit for G with
9(0) = 90(0) = (uo, vo).
Note that for each ¢ > 0, r =0,1,2,..., we have that each

gr(t) = lim (*) =" (t) and (p°)*""(t) e A, forall s € N.

§—00
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Working with the coordinated functions and using the invariance of the attrac-
tors, Lemma 4.1 and the Poincaré~Wirtinger inequality, we can prove, analogously
to Lemma 4.1 in [24], that each g, (t) is independent on z. Consequently, we obtain that
g(t) is a constant function in z. As A, C |J, A, for all s € N, we obtain that there
exists a constant C' > 0 such that ||g,(¢)||gxg < C for allt > 0 and r =0,1,2,...
So, in particular, we have that g(t) is bounded in H x H. Then, there exists a constant
C > 0 such that

1 ~
|g(t)‘]R><]R = 7‘Q|1/2 Hg(t)”HxH < (C forallteR.

So, we conclude that g : R — R x R is a complete bounded orbit for G*
through (uo, vo).
Using Theorem 15 in [21], we obtain that (ug,v) € A°. O

The next result is a direct consequence of Theorem 4.7 and Corollary 3.6.

Corollary 4.8. The family of attractors {As}sen associated with the problem (1.1)
is upper semicontinuous at infinity in the topology of LP () x LI(Q).

Proof. Let {as}sen be an arbitrary sequence with as € Ag for each s € N. We will
prove that there exists a. € A™ and a subsequence {as, }ren such that as, — aeo
in the topology of LP(§2) x L9(£2).

By Theorem 4.7, dist g« i (As, A®°) — 0 as s — oo. Therefore, we have the existence
of a subsequence {as, }reny and as € A such that as, — ao in the topology of
H x H.

By Corollary 3.6 item (b), |lus(t)||x + ||vs(®)|ly < 7o, for all ¢ > ¢; and s € N,
where X = WHP(Q), Y = WH4(Q) and (us,vs) is any solution of problem (1.1). So,
using the invariance of the global attractors, we have that there exists a bounded set
B C X x Y such that A, C B for all s € N. (Observe that as Q is a bounded domain,
we can also consider, without loss of generality, that A> C B).

So, the subsequence {as, }reny is bounded in X x Y and therefore, since
X XY < LP(Q) x L1(R) is compact, there exists another subsequence, that we still
denote by {as, }reny and @ € LP(Q) x L1(Q) such that as, — G in LP(Q) x L1(Q).
Since LP(Q) x LY(Q) — H x H, we also have a5, — @ in H x H. By the uniqueness
of the limit, we have G = aoo € A and the convergence is also in LP(€2) x L1(1).
This implies that

distpr()x £a(0) (As, A™) = 0 as s — oo. O

5. FINAL REMARKS

Remark 5.1. Note that if ps(-) = p and ¢s(-) = ¢ the family of attractors is also
lower semicontinuous since each solution of (4.1) is also a solution of (1.1). For the
general case of a variable exponent, lower semicontinuity is an open problem.
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Remark 5.2. In the works [6,32], the authors considered families of equations with

ps — 2. This is also a point that could be considered for the coupled system in future

works. Note that p > 2 was essential to guarantee that the limit problem is dissipative.

Even for the simple case of one equation

au(t) + u(t) = au(t), t >0, (5.1)
u(0) =up € R, '

with @ > 1 a real number, the solution is u(t) = upel®~Y* and we have |u(t)| — oo as
t — oo. In this case a global B-attractor for the problem (5.1) does not exist.

Remark 5.3. By using Faedo—Galerkin method and working with a space W
of functions in L?(Q) having gradients in LP(*)(Q2) one could try to prove existence of
solution for the following system:

Ous _ div(Ds|Vus ”S(z)*QVus) + |us o:(2)=2y ¢ F(us,vs), t>0, x €,

ot

a&s — div(Ds| Vv, |9 @) =2V, + |vg|*®) =20, € G(us,vs), t>0,z€Q,
e (t, ) = G (t, @) = 0, t>0, z €,
u3<0,fL’) = UOs(x)a ’US(O,Q’J) = U05<LL‘), r €,

(5.2)
with py,q5,05 ,uy > 1and pf,qf,0f, uf <L, for all s € N. It is worth emphasizing
that this space W was used in [19] for a problem with one equation where we had
uniqueness of solution while the coupled system of inclusions is a worse case, we have
no guaranty of uniqueness of solution. This idea could be explored in further works.
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