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Abstract. This work concerns the study of asymptotic behavior of coupled systems of
p(x)-Laplacian differential inclusions. We obtain that the generalized semiflow generated by
the coupled system has a global attractor, we prove continuity of the solutions with respect
to initial conditions and a triple of parameters and we prove upper semicontinuity of a family
of global attractors for reaction-diffusion systems with spatially variable exponents when
the exponents go to constants greater than 2 in the topology of L∞(Ω) and the diffusion
coefficients go to infinity.
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1. INTRODUCTION

PDEs for which the flow is essentially determined by an ordinary differential equation
have been studied by many researchers, see for example [2, 9, 10,12,16–18,24,25,29].
In [27–29] the authors investigated in which way the parameter p(x) affects the dynamic
of problems involving the p(x)-Laplacian.

In this work we consider the following nonlinear coupled system




∂us

∂t − div(Ds|∇us|ps(x)−2∇us) + |us|ps(x)−2us ∈ F (us, vs), t > 0, x ∈ Ω,
∂vs

∂t − div(Ds|∇vs|qs(x)−2∇vs) + |vs|qs(x)−2vs ∈ G(us, vs), t > 0, x ∈ Ω,
∂us

∂n
(t, x) = ∂vs

∂n
(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

us(0, x) = u0s(x), vs(0, x) = v0s(x), x ∈ Ω,

(1.1)

where u0s, v0s ∈ H := L2(Ω), Ω ⊂ Rn (n ≥ 1) is a smooth bounded domain,
Ds ∈ [1,∞), ps(·), qs(·) ∈ C(Ω̄), p−

s := minx∈Ω ps(x) ≥ p, q−
s := minx∈Ω qs(x) ≥ q,
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p+
s := maxx∈Ω ps(x) ≤ L, q+

s := maxx∈Ω qs(x) ≤ L, for all s ∈ N. We assume that
ps(·) → p, qs(·) → q in L∞(Ω) and Ds → ∞ as s → ∞, where L, p, q > 2 are positive
constants. F,G : L2(Ω) × L2(Ω) → P (L2(Ω)) are bounded, upper semicontinuous and
positively sublinear multivalued maps. We will prove that the dynamics of the coupled
reaction-diffusion system of inclusions with large diffusion is governed by an ordinary
coupled system of inclusions when the variable exponent become constant. The goal is
to prove the convergence of solutions and global attractors to the corresponding ones
of a limit ordinary differential coupled inclusion system.

The constant exponent case was considered in [23] and the variable exponent case
without perturbation on the main operator and positive finite diffusion was considered
in [26]. A partial differential inclusion with multivalued right-hand side of Lipschitz
type was considered in [20].

The paper is organized as follows. In Section 2 we remind some definitions, we
present properties of the operator and we prove the existence of global solutions and
global attractors. In Section 3 we obtain uniform estimates for solutions of (1.1).
In Section 4 we prove that the solutions {us} of (1.1) converge to the solution u of
the limit problem (4.1) which is an Ordinary Differential Inclusion (ODI) system,
and, after that, we obtain the upper semicontinuity of the global attractors for the
problem (1.1).

2. EXISTENCE OF GLOBAL SOLUTIONS AND GLOBAL ATTRACTOR

In this work, to study global attractors for the system (1.1) for which we do not
have guarantee of uniqueness of solution, we follow the general framework of the
works [5, 21,22]. Let us first remind some definitions. Consider the system





ut +Au ∈ F (u, v), t ∈ (0, T ),
vt +Bv ∈ G(u, v), t ∈ (0, T ),
u(0) = u0, v(0) = v0,

(2.1)

where A and B are monotone operators of subdifferential type defined in a real Hilbert
space H.

Definition 2.1 ([22]). A strong solution (weak solution) of (2.1) is a pair (u, v) satis-
fying: u, v ∈ C([0, T ];H) for which there exists f, g ∈ L1(0, T ;H), f(t) ∈ F (u(t), v(t)),
g(t) ∈ G(u(t), v(t)) a.e. in (0, T ), and such that (u, v) is a strong solution (weak
solution) (see Definition 3.1 and Theorem 3.4 in [7]) on (0, T ) to the system (2.2)
below: 




ut +Au = f,

vt +Bv = g,

u(0) = u0, v(0) = v0.

(2.2)
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Definition 2.2 ([3, 4, 22]). Let X be a real Banach space and U a topological space.
A mapping G : U → P (X) is called upper semicontinuous at u ∈ U if

(i) G(u) is nonempty, bounded, closed and convex,
(ii) for each open subset D in X satisfying G(u) ⊂ D, there exists a neighborhood V

of u, such that G(v) ⊂ D, for each v ∈ V .
If G is upper semicontinuous at each u ∈ U , then it is called upper semicontinuous
on U .
Definition 2.3 ([3,4,22]). Let X be a real Banach space and M a Lebesgue measurable
subset in Rq, q ≥ 1. By a selection of E : M → P (X) we mean a function f : M → X
such that f(y) ∈ E(y) a.e. y ∈ M , and we denote by Sel E the set

Sel E := {f ; f : M → X is a measurable selection of E}.

In order to get global solutions we impose suitable conditions on the terms F and G.
Definition 2.4 ([22]). The pair (F,G) of maps F,G : H ×H → P (H), which takes
bounded subsets of H ×H into bounded subsets of H, is called positively sublinear
if there exist a > 0, b > 0, c > 0 and m0 > 0 such that for each (u, v) ∈ H × H
with ∥u∥H > m0 or ∥v∥H > m0 for which either there exists f0 ∈ F (u, v) satisfying
⟨u, f0⟩ > 0 or there exists g0 ∈ G(u, v) with ⟨v, g0⟩ > 0, we have both

∥f∥H ≤ a∥u∥H + b∥v∥H + c and ∥g∥H ≤ a∥u∥H + b∥v∥H + c

for each f ∈ F (u, v) and each g ∈ G(u, v).
Now, let us remind the definitions of Lebesgue and Sobolev spaces with variable

exponents. Considering p ∈ L∞
+ (Ω) := {q ∈ L∞(Ω) : ess inf q ≥ 1}, then

Lp(·)(Ω) :=



u; u : Ω → R is measurable and

∫

Ω

|u(x)|p(x)dx < ∞





is a Banach space with the norm

∥u∥p(x) := inf
{
λ > 0; ρ

(u
λ

)
≤ 1
}
,

where ρ(u) :=
∫

Ω |u(x)|p(x)dx. The following inequality will be used later

min{∥u∥p−

p(x), ∥u∥p+

p(x)} ≤
∫

Ω

|u(x)|p(x)dx ≤ max{∥u∥p−

p(x), ∥u∥p+

p(x)}. (2.3)

Furthermore,
W 1,p(·)(Ω) :=

{
u ∈ Lp(·)(Ω); |∇u| ∈ Lp(·)(Ω)

}

which is a Banach space with the norm

∥u∥W 1,p(·)(Ω) := ∥∇u∥p(x) + ∥u∥p(x).
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We refer the reader to [14, 15] for more details on Lebesgue and Sobolev spaces
with variable exponents.

The authors in [30] (see also [31]) proved that the operator

Asu := −div(Ds|∇u|ps(x)−2∇u) + |u|ps(x)−2u

is the realization in H of the operator As
1 : Xs → X∗

s , Xs := W 1,ps(·)(Ω),

As
1u(v) :=

∫

Ω

Ds|∇u(x)|ps(x)−2∇u(x) · ∇v(x)dx+
∫

Ω

|u(x)|ps(x)−2u(x)v(x)dx,

i.e., As(u) = As
1u, if u ∈ D(As) := {u ∈ Xs; As

1u ∈ H} and it is a maximal monotone
operator in H. Besides, As generates a compact semigroup and is the subdifferential
of the proper, convex and lower semicontinuous function φps(x) : H → R ∪ {+∞}
defined by

φps(x)(u) :=





[∫

Ω

Ds

ps(x) |∇u|ps(x)dx+
∫

Ω

1
ps(x) |u|ps(x)dx

]
, if u ∈ Xs,

+∞, otherwise.
(2.4)

Moreover, they proved in [30] that the system (1.1) has a strong global solution (us, vs).
Using the following elementary assertion we can obtain estimates on the operator

only by considering two cases.
Proposition 2.5 ([1]). Let λ, µ be arbitrary nonnegative numbers. For every positive
α, β, α ≥ β,

λα + µβ ≥ 1
2α

{
(λ+ µ)α if λ+ µ < 1,
(λ+ µ)β if λ+ µ ≥ 1.

Then it is easy to show that for every u ∈ Xs

⟨Asu, u⟩X∗
s ,Xs

≥ 1
2p+

s

{
∥u∥p+

s

Xs
if ∥u∥Xs

< 1,
∥u∥p−

s

Xs
if ∥u∥Xs ≥ 1.

(2.5)

From now on, we will denote Xs := W 1,ps(·)(Ω), Ys := W 1,qs(·)(Ω), X := W 1,p(Ω)
and Y := W 1,q(Ω).

It is a known result that Xs, Ys ⊂ H with continuous and dense embeddings
(see [14,25]). Moreover, it is easy to see that

∥us∥H ≤ 4(|Ω| + 1)2∥us∥Xs
, (2.6)

for all us ∈ Xs and for all s ∈ N.
By [22], we obtain that if Rs(u0, v0) is the set of all solutions of (1.1) with initial

data (u0, v0), then
Gs :=

⋃

(u0,v0)∈H×H

Rs(u0, v0)

is a generalized semiflow in H ×H (which is called the generalized semiflow associated
with (1.1)), i.e., Gs is a family of maps φ : [0,∞) → H ×H satisfying the conditions:



Reaction-diffusion coupled inclusions with variable exponents and large diffusion 543

(H1) For each z ∈ H ×H there exists at least one φ ∈ Gs with φ(0) = z.
(H2) If φ ∈ Gs and τ ≥ 0, then φτ ∈ Gs, where φτ (t) := φ(t+ τ) for all t ∈ [0,∞).
(H3) If φ,ψ ∈ Gs, and ψ(0) = φ(t) for some t ≥ 0, then θ ∈ Gs, where

θ(τ) .=
{
φ(τ) for τ ∈ [0, t],
ψ(τ − t) for τ ∈ (t,∞).

(H4) If {φj}∞
j=1 ⊂ Gs and φj(0) → z, then there exists a subsequence {φµ} of {φj}

and φ ∈ Gs with φ(0) = z such that φµ(t) → φ(t) for each t ≥ 0.

Let us review some concepts from [21]:

Definition 2.6. Let G be a generalized semiflow in a complete metric space M .

(a) G is bounded dissipative or B-dissipative if there is a bounded global B-attractor
for G.

(b) G is point dissipative if there is a bounded global point attractor for G.
(c) We say that G is φ-dissipative if there is a bounded set B0 such that, for any

φ ∈ G, φ(t) ∈ B0 for all sufficiently large t.
(d) G is eventually bounded if for any bounded set B ⊂ M there exists τ = τ(B) ≥ 0

such that γ+
τ (B) :=

⋃
t≥τ {φ(t); φ ∈ G with φ(0) ∈ B} is a bounded set in M .

Remark 2.7. The following implications hold for a generalized semiflow G in a com-
plete metric space:

G is bounded dissipative ⇒ G is point dissipative ⇒ G is φ-dissipative.

Moreover,
G is bounded dissipative ⇒ G is eventually bounded.

Definition 2.8. A generalized semiflow G in a complete metric space M is asymp-
totically compact if for any sequence {φj} ⊂ G with {φj(0)} being a bounded set
in M , and for any sequence {tj}, tj → ∞, the sequence {φj(tj)} has a convergent
subsequence.

According to Theorem 9 in [21], in order to assure the existence of a compact
invariant global attractor for (1.1), it is enough to guarantee that the generalized
semiflow Gs defined by (1.1) is asymptotically compact and φ-dissipative.

In this work we denote

As(w) := −div(Ds|∇w|ps(x)−2∇w) + |w|ps(x)−2w,

and analogously

Bs(w) := −div(Ds|∇w|qs(x)−2∇w) + |w|qs(x)−2w,

Ss the semigroup generated by As and Ts the multivalued semigroup defined by Gs.
In the next result we will prove that the generalized semiflow Gs defined by (1.1)

is bounded dissipative and so, eventually bounded and φ-dissipative (see Remark 2.7).
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Theorem 2.9. Let F,G : H × H → P (H) be bounded, upper semicontinuous and
positively sublinear maps. Then, there exist a bounded set Bs in H×H and t0 > 0 such
that for any φs ∈ Gs, φs(t) ∈ Bs for all t ≥ t0. Thus, in particular, the generalized
semiflow Gs defined by (1.1) is bounded dissipative.
Proof. Let φs = (us, vs) ∈ Gs a solution of (1.1). Then there exists a pair
(fs, gs) ∈ Sel F (us, vs) × Sel G(us, vs), fs, gs ∈ L1(0, T ;H) for each T > 0 such
that us, vs satisfy the problem





∂us

∂t +As(us) = fs in (0, T ) × Ω,
∂vs

∂t +Bs(vs) = gs in (0, T ) × Ω,
us(0, x) = u0s(x), vs(0, x) = v0s(x) in Ω.

(2.7)

Multiplying the first equation by us we obtain
〈∂us(t)

∂t
, us(t)

〉
H

+
〈
As(us(t)), us(t)

〉
H

= ⟨fs(t), us(t)⟩H .

Let I := (0, T ), I1s := {t ∈ I : ∥us(t)∥Xs
< 1} and I2s := {t ∈ I : ∥us(t)∥Xs

≥ 1}.
Then by (2.5)

1
2
d

dt
∥us(t)∥2

H + 1
2p+

s

∥us(t)∥p+
s

Xs
≤ ⟨fs(t), us(t)⟩H if t ∈ I1s,

and
1
2
d

dt
∥us(t)∥2

H + 1
2p+

s

∥us(t)∥p−
s

Xs
≤ ⟨fs(t), us(t)⟩H if t ∈ I2s.

Thus,

1
2
d

dt
∥us(t)∥2

H ≤





− σ

αp
+
s

∥us(t)∥p+
s

H + ⟨fs(t), us(t)⟩H if t ∈ I1s,

− σ

αp
−
s

∥us(t)∥p−
s

H + ⟨fs(t), us(t)⟩H if t ∈ I2s,
(2.8)

where α := 4(|Ω| + 1)2 and σ := 1
2L .

In an analogous way, multiplying the second equation in (2.7) by vs we obtain

1
2
d

dt
∥vs(t)∥2

H ≤





− σ

αq
+
s

∥vs(t)∥q+
s

H + ⟨gs(t), vs(t)⟩H if t ∈ ˜I1s

− σ

αq
−
s

∥vs(t)∥q−
s

H + ⟨gs(t), vs(t)⟩H if t ∈ ˜I2s,

where ˜I1s := {t ∈ I : ∥vs(t)∥Ys < 1}, ˜I2s := {t ∈ I : ∥vs(t)∥Ys ≥ 1}.
Now, let rs := p+

s

p−
s
> 1 and r′

s such that 1
rs

+ 1
r′

s
= 1 then by Young’s inequality

∥us(t)∥p−
s

H ≤ 1
r′

s

+ 1
rs

∥us(t)∥p+
s

H

and so
− σ

αp+
s

∥us(t)∥p+
s

H ≤ rs

(
− σ

αp+
s

∥us(t)∥p−
s

H + σ

αp+
s r′

s

)
. (2.9)
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Using (2.9) in (2.8) we get

1
2
d

dt
∥us(t)∥2

H ≤ −C2∥us(t)∥p−
s

H + ⟨fs(t), us(t)⟩H + C1 for all t ∈ I = (0, T ),

where C2 := 1
(2α)L and C1 := Lσ

pαp .
In an analogous way, taking r̃s := q+

s

q−
s
> 1 and r̃′

s such that 1
r̃s

+ 1
r̃′

s
= 1 we get

1
2
d

dt
∥vs(t)∥2

H ≤ −C̃2∥vs(t)∥q−
s

H + ⟨gs(t), vs(t)⟩H + C̃1 for all t ∈ I = (0, T ),

where C̃2 = C2 = 1
(2α)L and C̃1 := Lσ

qαq .
Thus, we obtain

{
1
2

d
dt ∥us(t)∥2

H ≤ −C2∥us(t)∥p−
s

H + ⟨fs(t), us(t)⟩H + C1,
1
2

d
dt ∥vs(t)∥2

H ≤ −C̃2∥vs(t)∥q−
s

H + ⟨gs(t), vs(t)⟩H + C̃1,
(2.10)

where C2, C̃2, C1, C̃1 are positive real numbers depending on |Ω|, L, p, q.
We can suppose, without loss of generality that p−

s ≥ q−
s . If p−

s = q−
s we obtain

a similar expression as (2.10) with q−
s in place of p−

s . If p−
s > q−

s , taking θs := p−
s

q−
s
> 1,

θ′
s such that 1

θs
+ 1

θ′
s

= 1 and ϵ > 0 we have

∥us(t)∥q−
s

H = ϵ

ϵ
∥us(t)∥q−

s

H ≤ 1
θ′

sϵ
θ′

s
+ 1
θs
ϵθs∥us(t)∥p−

s

H

and then
−C2∥us(t)∥p−

s

H ≤ θs

ϵθs

[ C2
θ′

sϵ
θ′

s
− C2∥us(t)∥q−

s

H

]
.

So, we have that




1
2

d
dt ∥us(t)∥2

H ≤ − C2θs

ϵθs
∥us(t)∥q−

s

H + ⟨fs(t), us(t)⟩H + C1 + θsC2
θ′

sϵθs ϵθ′
s
,

1
2

d
dt ∥vs(t)∥2

H ≤ −C̃2∥vs(t)∥q−
s

H + ⟨gs(t), vs(t)⟩H + C̃1.
(2.11)

Now, we use that (F,G) is positively sublinear (see Definition 2.4) to estimate
⟨fs(t), us(t)⟩H and ⟨gs(t), vs(t)⟩H . To do this, we have to consider the following three
cases:
Case 1. If ∥us(t)∥H ≤ m0 and ∥vs(t)∥H ≤ m0 then as F and G map bounded subsets
of H ×H into bounded subsets of H there exists C > 0 such that

⟨fs(t), us(t)⟩H ≤ ∥fs(t)∥H∥us(t)∥H ≤ Cm0

and
⟨gs(t), vs(t)⟩H ≤ ∥gs(t)∥∥vs(t)∥ ≤ Cm0.
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Case 2. If ∥us(t)∥H > m0 or ∥vs(t)∥H > m0 and ⟨f0, us(t)⟩ ≤ 0 and ⟨g0, vs(t)⟩ ≤ 0 for
all f0 ∈ F (us(t), vs(t)) and for all g0 ∈ G(us(t), vs(t)) then ⟨fs(t), us(t)⟩H ≤ 0 and
⟨gs(t), vs(t)⟩H ≤ 0.
Case 3. If ∥us(t)∥H > m0 or ∥vs(t)∥H > m0 and ⟨f0, us(t)⟩ > 0 or ⟨g0, vs(t)⟩ > 0 for
some f0 ∈ F (us(t), vs(t)) or for some g0 ∈ G(us(t), vs(t)) then, for ϵ > 0, κs := q−

s

2 > 1
and νs := q−

s

(q−
s )′ > 1, we get

⟨fs(t), us(t)⟩ ≤ ∥fs(t)∥H∥us(t)∥H

≤ ϵ

ϵ
a∥us(t)∥2

H + ϵ

ϵ
b∥us(t)∥H∥vs(t)∥H + ϵ

ϵ
c∥us(t)∥H

≤ 1
κ′

s

(a
ϵ

)κ′
s + 1

κs
ϵκs∥us(t)∥q−

s

H + 1
(q−

s )′

(b
ϵ

)(q−
s )′

∥vs(t)∥(q−
s )′

H

+ 1
q−

s
ϵq

−
s ∥us(t)∥q−

s

H + 1
(q−

s )′

(c
ϵ

)(q−
s )′

+ 1
q−

s
ϵq

−
s ∥us(t)∥q−

s

H

=
( 2
q−

s
ϵ

q
−
s
2 + 2

q−
s
ϵq

−
s

)
∥us(t)∥q−

s

H + ϵ

ϵ

1
(q−

s )′

(b
ϵ

)(q−
s )′

∥vs(t)∥(q−
s )′

H

+
( 1
κ′

s

(a
ϵ

)κ′
s + 1

(q−
s )′

(c
ϵ

)(q−
s )′)

≤
( 2
q−

s
ϵ

q
−
s
2 + 2

q−
s
ϵq

−
s

)
∥us(t)∥q−

s

H + ϵνs

νs
∥vs(t)∥q−

s

H

+
[ 1
ν′

s

(1
ϵ

1
(q−

s )′

(b
ϵ

)(q−
s )′)ν′

s + 1
κ′

s

(a
ϵ

)κ′
s + 1

(q−
s )′

(c
ϵ

)(q−
s )′]

and in an analogous way

⟨gs(t), vs(t)⟩ ≤
( 2
q−

s
ϵ

q
−
s
2 + 2

q−
s
ϵq

−
s

)
∥vs(t)∥q−

s

H + ϵνs

νs
∥us(t)∥q−

s

H

+
[ 1
ν′

s

(1
ϵ

1
(q−

s )′

(a
ϵ

)(q−
s )′)ν′

s + 1
κ′

s

(b
ϵ

)κ′
s + 1

(q−
s )′

(c
ϵ

)(q−
s )′]

.

Therefore, in all cases we get

⟨fs(t), us(t)⟩ ≤
( 2
q−

s
ϵ

q
−
s
2 + 2

q−
s
ϵq

−
s

)
∥us(t)∥q−

s

H + ϵνs

νs
∥vs(t)∥q−

s

H +m0C

+
[ 1
ν′

s

(1
ϵ

1
(q−

s )′

(b
ϵ

)(q−
s )′)ν′

s + 1
κ′

s

(a
ϵ

)κ′
s + 1

(q−
s )′

(c
ϵ

)(q−
s )′]

and

⟨gs(t), vs(t)⟩ ≤
( 2
q−

s
ϵ

q
−
s
2 + 2

q−
s
ϵq

−
s

)
∥vs(t)∥q−

s

H + ϵνs

νs
∥us(t)∥q−

s

H +m0C

+
[ 1
ν′

s

(1
ϵ

1
(q−

s )′

(a
ϵ

)(q−
s )′)ν′

s + 1
κ′

s

(b
ϵ

)κ′
s + 1

(q−
s )′

(c
ϵ

)(q−
s )′]

.
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Using the last two inequalities in (2.11) we obtain

1
2
d

dt
∥us(t)∥2

H ≤
(

− C2θs

ϵθs
+ 2
q−

s
ϵ

q
−
s
2 + 2

q−
s
ϵq

−
s

)
∥us(t)∥q−

s

H

+ ϵνs

νs
∥vs(t)∥q−

s

H + C3(ϵ, s)

and

1
2
d

dt
∥vs(t)∥2

H ≤
(

− C̃2 + 2
q−

s
ϵ

q
−
s
2 + 2

q−
s
ϵq

−
s

)
∥vs(t)∥q−

s

H

+ ϵνs

νs
∥us(t)∥q−

s

H + C4(ϵ, s),

where

C3(ϵ, s) = m0C +
[ 1
ν′

s

(1
ϵ

1
(q−

s )′

(b
ϵ

)(q−
s )′)ν′

s + 1
κ′

s

(a
ϵ

)κ′
s + 1

(q−
s )′

(c
ϵ

)(q−
s )′]

+ C1 + θsC2
θ′

sϵ
θsϵθ

′
s

and

C4(ϵ, s) = m0C +
[ 1
ν′

s

(1
ϵ

1
(q−

s )′

(a
ϵ

)(q−
s )′)ν′

s + 1
κ′

s

(b
ϵ

)κ′
s + 1

(q−
s )′

(c
ϵ

)(q−
s )′]

+ C̃1.

Thus, adding the last two inequalities we obtain

1
2
d

dt

(
∥us(t)∥2

H + ∥vs(t)∥2
H

)

≤
(

− C2θs

ϵθs
+ 2
q−

s
ϵ

q
−
s
2 + 2

q−
s
ϵq

−
s + ϵνs

νs

)
∥us(t)∥q−

s

H

+
(

− C̃2 + 2
q−

s
ϵ

q
−
s
2 + 2

q−
s
ϵq

−
s + ϵνs

νs

)
∥vs(t)∥q−

s

H + C3(ϵ, s) + C4(ϵ, s).

As ϵ > 0 is arbitrary, we can take ϵ0 sufficiently small such that

2
q−

s
ϵ

q
−
s
2

0 + 2
q−

s
ϵ

q−
s

0 + ϵνs
0
νs

<
C̃2
2 and C2θs

ϵθs
0

≥ C̃2.

Then

1
2
d

dt

(
∥us(t)∥2

H + ∥vs(t)∥2
H

)
≤ −C5

(
∥u(t)∥q−

s

H + ∥vs(t)∥q−
s

H

)
+ C6(s),

where C5 := C̃2
2 > 0 and C6(s) = C3(ϵ0, s) + C4(ϵ0, s) > 0.
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Thus,

1
2
d

dt

(
∥us(t)∥2

H + ∥vs(t)∥2
H

)
≤ −C5

(
∥us(t)∥2 q

−
s
2

H + ∥vs(t)∥2 q
−
s
2

H

)
+ C6(s)

≤ − C5

2
q

−
s
2

(
∥us(t)∥2

H + ∥vs(t)∥2
H

) q
−
s
2 + C6(s).

Therefore, the function ys(t) := ∥us(t)∥2
H + ∥vs(t)∥2

H satisfies the inequality

y′
s(t) ≤ − 2C5

2
q

−
s
2

ys(t)
q

−
s
2 + 2C6(s), t > 0.

From Lemma 5.1 in [33] we obtain

ys(t) ≤




2C6(s)
2C5

2q−
s /2




2/q−
s

+
[

2C5

2q−
s /2

(
q−

s

2 − 1
)
t

]
−1(

q−
s

2 − 1
)

.

So, considering

rs :=
(

2C6(s)2q−
s /2

2C5

)2/q−
s

+
[

2C5

2q−
s /2

(
q−

s

2 − 1
)]

−1(
q−

s

2 − 1
)

and t0 = 1 we have ∥us(t)∥2
H + ∥vs(t)∥2

H ≤ rs, for all t ≥ t0.

Corollary 2.10. Gs is asymptotically compact.

Proof. Let {φj} ⊂ Gs with {φj(0)} bounded in H × H, and {φj(tj)} a sequence
in H × H with tj → ∞. We want to show that {φj(tj)} has a convergent sub-
sequence. By definition φj = (uj , vj), φj(0) = (uj(0), vj(0)) ∈ H × H. As
tj → ∞ we can suppose tj ≥ 1 for all j ∈ N and as Gs is a generalized semiflow
φ̃j = φ

tj−1
j = (utj−1

j , v
tj−1
j ) ∈ Gs. Then for each j ∈ N there exist fj , gj ∈ L1(0, 1;H),

fj ∈ Sel F (utj−1
j , v

tj−1
j ), gj ∈ Sel G(utj−1

j , v
tj−1
j ), where (utj−1

j , v
tj−1
j ) is the solution

of (2.7) on (0, 1) × Ω.
Let K1 = {fj , j ∈ N}, K2 = {gj , j ∈ N}, M(K1)(t) = {utj−1

j (t), j ∈ N} and
M(K2)(t) = {vtj−1

j (t), j ∈ N}, t ∈ [0, 1], and {Ss(t), t ≥ 0} the compact semigroup
generated by As on H.

Now, let h > 0 be such that 1 − h ∈ [0, 1]. We define Th : M(K1)(1) → H by
setting utj−1

j (1) 7→ Ss(h)utj−1
j (1 − h).
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It is easy to show that K1 is a bounded set in L1(0, 1;H) and is uniformly integrable
in L1(0, 1;H). As Gs is eventually bounded, {φ̃j(0)} = {φj(tj − 1)} is a bounded
subset of H ×H if j is big enough. Consequently, M(K1)(1 − h) is a bounded subset
of H. So, Th is a compact operator. Moreover, we have

∥ Ss(h)utj−1
j (1 − h) − u

tj−1
j (1) ∥ ≤

1∫

1−h

∥ fj(s) ∥ ds, ∀ j ∈ N.

So we have that limh→0 Th = I, uniformly in M(K1)(1). Therefore the map
I : M(K1)(1) → M(K1)(1) is a compact operator and then, M(K1)(1) is relatively
compact in H. The same arguments show that M(K2)(1) is relatively compact in H,
therefore {φj(tj)} has a convergent subsequence in H ×H.

We conclude that Gs has a compact invariant global attractor As. The global
attractor As is unique and given by As =

⋃
B∈B(H×H) ωs(B), where B(H×H) means

the bounded subsets of H × H. Furthermore As is the maximal compact invariant
subset of H ×H, and is minimal among all closed global attractors of bounded sets.
We also have that As is the union of all complete bounded orbits in H × H (see
Theorem 15 in [21]).

3. UNIFORM ESTIMATES

In this section we prove uniform estimates in H ×H and Xs × Ys for the solutions
of (1.1).
Lemma 3.1. If (us, vs) is a solution of (1.1), then there exist positive numbers r0
and a constant t0 > 0 such that ∥(us(t), vs(t))∥H×H ≤ r0, for each t ≥ t0 and s ∈ N.

Proof. The same arguments employed in the proof of Theorem 2.9 can also be applied
here, but now, in order to obtain uniform estimates, we use from the beginning the
hypothesis p−

s ≥ p, q−
s ≥ q, p+

s ≤ L, q+
s ≤ L for all s ∈ N, and we obtain

1
2
d

dt
∥us(t)∥2

H ≤ −C2∥us(t)∥p
H + ⟨fs(t), us(t)⟩H + C1 for all t ∈ I = (0, T )

and
1
2
d

dt
∥vs(t)∥2

H ≤ −C̃2∥vs(t)∥q
H + ⟨gs(t), vs(t)⟩H + C̃1 for all t ∈ I = (0, T ).

Thus, we obtain
{

1
2

d
dt ∥us(t)∥2

H ≤ −C2∥us(t)∥p
H + ⟨fs(t), us(t)⟩H + C1,

1
2

d
dt ∥vs(t)∥2

H ≤ −C̃2∥vs(t)∥q
H + ⟨gs(t), vs(t)⟩H + C̃1,

where C2, C̃2, C1, C̃1 are positive real numbers depending on |Ω|, L, p, q. Now, repeating
the procedure with θ := p/q, κ := q/2, ν := q/q′ we obtain the result.
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Remark 3.2. The constants r0 and t0 in Lemma 3.1 are independent of the initial
values and can be chosen uniformly in s ∈ N.
Corollary 3.3. There exists a bounded set B0 in H ×H such that As ⊂ B0 for all
s ∈ N.
Lemma 3.4. If (us, vs) is a solution of (1.1), then there exists a positive number
K = K(u0s, v0s, t0) such that ∥(us(t), vs(t))∥H×H ≤ K, for all t ∈ [0, t0]. If the initial
values are all in a bounded set of H ×H, then K is uniform in s and we have that
∥(us(t), vs(t))∥H×H ≤ K, for each s and for each t ∈ [0, t0]. In this case we can
consider t0 = 0 in Lemma 3.1.
Proof. As (us, vs) is a solution of (1.1), there exists a pair (fs, gs) ∈ Sel F (us, vs) ×
Sel G(us, vs), fs, gs ∈ L1(0, T ;H) such that us, vs satisfy the problem





∂us

∂t +As(us) = fs in (0, T ) × Ω,
∂vs

∂t +Bs(vs) = gs in (0, T ) × Ω,
us(0, x) = u0s(x), vs(0, x) = v0s(x) in Ω.

(3.1)

Then, multiplying the first equation on (3.1) by us(t) and the second one by vs(t),
summing up and using that ⟨As(us(t)), us(t)⟩ ≥ 0 and ⟨Bs(vs(t)), vs(t)⟩ ≥ 0 it follows
that

1
2
d

dt

(
∥us(t)∥2

H + ∥vs(t)∥2
H

)
≤ ⟨fs(t)), us(t)⟩ + ⟨gs(t)), vs(t)⟩.

Now, we use that (F,G) is positively sublinear to estimate ⟨fs(t)), us(t)⟩ and
⟨gs(t)), vs(t)⟩ and we obtain

1
2
d

dt

(
∥us(t)∥2

H + ∥vs(t)∥2
H

)
≤ C1

(
∥us(t)∥2

H + ∥vs(t)∥2
H

)
+ C2, (3.2)

where C1 is a positive real number depending on a, b, c and C2 is a positive real number
depending on m0.

Integrating (3.2) from 0 to t ≤ t0 we obtain

∥us(t)∥2
H + ∥vs(t)∥2

H

≤
(
∥u0s∥2

H + ∥v0s∥2
H

)
+

t∫

0

2C1
(
∥us(τ)∥2

H + ∥vs(τ)∥2
H

)
dτ + 2C2t0.

By the Gronwall–Bellman inequality

∥us(t)∥2
H + ∥vs(t)∥2

H ≤
(
∥u0s∥2

H + ∥v0s∥2
H + 2C2t0

)
e2C1t0 for all t ∈ [0, t0],

and the assertion of the lemma follows.

Lemma 3.5. If φs := (us, vs) ∈ Gs, then there exist positive constants K > 0 and
t1 > t0, independent of s, such that

∥φs(t)∥Xs×Ys = ∥us(t)∥Xs + ∥vs(t)∥Ys < K

for every t ≥ t1 and s ∈ N, where t0 is the positive constant in Lemma 3.1.
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Proof. Take t1 > t0. As (us, vs) is a solution of (1.1) there exists a pair
(fs, gs) ∈ Sel F (us, vs) × Sel G(us, vs), fs, gs ∈ L1(0, T ;H) such that us, vs satisfy the
problem {

∂us

∂t +As(us) = fs in (0, T ) × Ω,
∂vs

∂t +Bs(vs) = gs in (0, T ) × Ω.

Considering φps(x) as in (2.4) we obtain

d

dt
φps(x)(us(t)) =

〈
∂φps(x)(us(t)), ∂us

∂t
(t)
〉

=
〈
fs(t) − ∂us

∂t
(t), ∂us

∂t
(t) − fs(t) + fs(t)

〉

= −
∥∥∥∥fs(t) − ∂us

∂t
(t)
∥∥∥∥

2

H

+
〈
fs(t) − ∂us

∂t
(t), fs(t)

〉

for a.e. t in (0, T ). Therefore,

d

dt
φps(x)(us(t)) + 1

2

∥∥∥∥fs(t) − ∂us

∂t
(t)
∥∥∥∥

2

H

≤ 1
2∥fs(t)∥2

H .

Now by using Lemma 3.1 and the fact that F and G are bounded, there exists a positive
constant C0 such that ∥fs(t)∥H ≤ C0 for all t ≥ t0 and s ∈ N. In particular,

d

dt
φps(x)(us(t)) ≤ 1

2∥fs(t)∥2
H ≤ 1

2C
2
0 for all t ≥ t0, s ∈ N. (3.3)

By definition of the subdifferential we have the following inequality

φps(x)(us(t)) ≤ ⟨∂φps(x)(us(t)), us(t)⟩.

Thus
1
2
d

dt
∥us(t)∥2

H + φps(x)(us(t)) ≤
〈
∂us

∂t
(t), us(t)

〉
+ ⟨∂φps(x)(us(t)), us(t)⟩

= ⟨fs(t), us(t)⟩
≤ ∥fs(t)∥H∥us(t)∥H ≤ C0r0 (3.4)

for all t ≥ t0 and s ∈ N. Let t ≥ t0 and r := t1 − t0 > 0. Integrating (3.4) from t
to t+ r we obtain

t+r∫

t

φps(x)(us(τ))dτ ≤ 1
2∥us(t)∥2

H + C0r0r ≤ 1
2r

2
0 + C0r0r =: A (3.5)

for all s ∈ N. From (3.3), (3.5) and the Uniform Gronwall Lemma (see [33]), we obtain

φps(x)(us(t)) ≤ A

r
+ 1

2C
2
0r =: r̃1,
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for all t ≥ t1 and s ∈ N. Using (2.4) we obtain ∥us(t)∥Xs
≤ K1 for all t ≥ t1 and

s ∈ N for a positive constant K1. In a similar way, we conclude ∥vs(t)∥Ys ≤ K2 for all
t ≥ t1 and s ∈ N for a positive constant K2 and the assertion of the lemma follows.

Corollary 3.6.
(a) There exists a bounded set Bs

1 in Xs × Ys such that As ⊂ Bs
1.

(b) Let (us, vs) be a solution of problem (1.1). Given t1 > 0 there exists a positive
constant r2, independent of s, such that

∥us(t)∥X + ∥vs(t)∥Y < r2,

for all t ≥ t1 and s ∈ N, where X = W 1,p(Ω) and Y = W 1,q(Ω).
(c) A :=

⋃
s∈N As is a compact subset of H ×H.

Lemma 3.7. If (us, vs) ∈ Gs and there exists C > 0 such that ∥u0s∥Xs
+ ∥v0s∥Ys

≤ C
for all s ∈ N, then we have that there exists a positive constant K̃ such that

∥(us(t), vs(t)∥Xs×Ys ≤ K̃ for all s ∈ N, t ∈ [0, t1].

In this case we can consider t1 = 0 in Lemma 3.5.
Proof. Given t1 > 0, if (us, vs) is a solution of (1.1) then multiplying the first equation
by ∂us

∂t (t) we have that
∥∥∥∥
∂us

∂t
(t)
∥∥∥∥

2

H

+
〈
As(us(t)), ∂us

∂t
(t)
〉

=
〈
fs(t), ∂us

∂t
(t)
〉
.

As ⟨As(us(t)), ∂us

∂t (t)⟩ = d
dtφps(x)(us(t)), we obtain

1
2

∥∥∥∥
∂us

∂t
(t)
∥∥∥∥

2

H

+ d

dt
φps(x)(us(t)) ≤ 1

2∥fs(t)∥2
H

and then
d

dt
φps(x)(us(t)) ≤ 1

2∥fs(t)∥2
H .

Using Lemma 3.4 and the fact that F is bounded we conclude

d

dt
φps(x)(us(t)) ≤ C1 for all t ∈ [0, t1], s ∈ N,

where C1 > 0 is a constant. Therefore, integrating the equation above from 0 to τ , for
τ ≤ t1, we obtain

φps(x)(us(τ)) ≤ φps(x)(u0s) + C1t1 for all τ ∈ [0, t1], s ∈ N.

In a similar way, we obtain

φqs(x)(vs(τ)) ≤ φqs(x)(v0s) + C2t1 for all τ ∈ [0, t1], s ∈ N,

where C2 > 0 is a constant and the result follows.
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Corollary 3.8. Let (us, vs) be a solution of (1.1) with initial value u0s, v0s. If there
is C > 0 such that ∥u0s∥Xs + ∥v0s∥Ys ≤ C for all s ∈ N, then given t1 > 0 there exists
a positive constant R̃1 such that

∥us(t)∥X + ∥vs(t)∥Y ≤ R̃1,

for all t ∈ [0, t1] and s ∈ N, where X = W 1,p(Ω) and Y = W 1,q(Ω).

4. THE LIMIT PROBLEM AND CONVERGENCE PROPERTIES

Our objective in this section is to prove that the limit problem of problem (1.1) as
Ds increases to infinity and ps(·) → p > 2, qs(·) → q > 2 in L∞(Ω) as s → ∞ is
described by an ordinary differential system. Firstly we observe that the gradients of
the solutions of problem (1.1) converge in norm to zero as s → ∞, which allows us to
guess the limit problem 




u̇+ ϕp(u) ∈ F̃ (u, v),
v̇ + ϕq(v) ∈ G̃(u, v),
u(0) = u0, v(0) = v0,

(4.1)

where ϕp(w) := |w|p−2w, F̃ := F|R×R, G̃ := G|R×R : R × R → P (R) if we identify R
with the constant functions which are in H, since Ω is a bounded set.

The proof of the next result follows the ideas of [24], but some adjustments are
necessary for this variable exponent case. To obtain the limit system we first prove
the following theorem.

Theorem 4.1. If (us, vs) is a solution of (1.1), then for each t > t1, the
sequences of real numbers {∥∇us(t)∥H}s∈N and {∥∇vs(t)∥H}s∈N both possess
subsequences {∥∇usj

(t)∥H} and {∥∇vsj
(t)∥H} that converge to zero as j → ∞, where

t1 is the positive constant in Lemma 3.5.

Proof. Let T > 0 and t ∈ (t1, T ). Let (us, vs) be a solution of the problem (1.1). There-
fore, there are fs, gs ∈ L1(0, T ;H), with fs(t) ∈ F (us(t), vs(t)), gs(t) ∈ G(us(t), vs(t))
a.e. in (0, T ), such that (us, vs) is a solution of the system





dus

dt +Asus = fs in (0, T ),
dvs

dt +Bs = gs in (0, T ),
us(0) = u0s, vs(0) = v0s.

(4.2)

Taking the inner product of the first equation of (4.2) with us(τ), yields

1
2
d

dt
∥us(τ)∥2

H +Ds

∫

Ω

|∇us(τ)|ps(x)dx+
∫

Ω

|us(τ)|ps(x)dx = ⟨fs(τ), us(τ)⟩. (4.3)
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Analogously, we have that

1
2
d

dt
∥vs(τ)∥2

H +Ds

∫

Ω

|∇vs(τ)|qs(x)dx+
∫

Ω

|vs(τ)|qs(x)dx = ⟨gs(τ), vs(τ)⟩. (4.4)

Now by using Lemma 3.1 and the fact that F and G are bounded, there exists a positive
constant C0 such that ∥fs(τ)∥H ≤ C0 and ∥gs(τ)∥H ≤ C0 for all τ ≥ t0 and s ∈ N.
Thus

⟨fs(τ), us(τ)⟩ ≤ ∥fs(t)∥H∥us(τ)∥H ≤ C0r0

and

⟨gs(τ), vs(τ)⟩ ≤ ∥gs(t)∥H∥vs(τ)∥H ≤ C0r0.

Then, adding the equations (4.3) and (4.4), we obtain

1
2
d

dt

(
∥us(τ)∥2

H + ∥vs(τ)∥2
H

)

+Ds

∫

Ω

|∇us(τ)|ps(x)dx+Ds

∫

Ω

|∇vs(τ)|qs(x)dx

+
∫

Ω

|us(τ)|ps(x)dx+
∫

Ω

|vs(τ)|qs(x)dx ≤ C3, a.e. in (t1, T ).

As
∫

Ω

|us(τ)|ps(x)dx+
∫

Ω

|vs(τ)|qs(x)dx ≥ 0,

we have in particular that

1
2
d

dt

(
∥us(τ)∥2

H + ∥vs(τ)∥2
H

)

+Ds

∫

Ω

|∇us(τ)|ps(x)dx+Ds

∫

Ω

|∇vs(τ)|qs(x)dx ≤ C3,
(4.5)

a.e. in (t1, T ).
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Integrating the inequality (4.5) from t1 to T , we obtain

1
2

(
∥us(T )∥2

H + ∥vs(T )∥2
H

)

+Ds

T∫

t1

∫

Ω

|∇us(τ)|ps(x)dxdτ +Ds

T∫

t1

∫

Ω

|∇vs(τ)|qs(x)dxdτ

≤
T∫

t1

C3dτ + 1
2

(
∥us(t1)∥2

H + ∥vs(t1)∥2
H

)

≤ C3T + r2
0 := k(T ).

In particular

Ds

T∫

t1

∫

Ω

|∇us(τ)|ps(x)dxdτ ≤ k(T )

and

Ds

T∫

t1

∫

Ω

|∇vs(τ)|qs(x)dxdτ ≤ k(T ),

which implies
T∫

t1

∫

Ω

|∇us(τ)|ps(x)dxdτ ≤ 1
Ds

k(T ) → 0 as s → ∞.

Therefore there exists a subsequence sj such that
∫

Ω

|∇usj
(τ)|psj

(x)dx → 0 as j → ∞, τ -a.e. in (t1, T ),

and so there exists a subset J ⊂ (t1, T ) with Lebesgue measure m((t1, T )/J) = 0 such
that ∫

Ω

|∇usj
(τ)|psj

(x)dx → 0 as j → ∞, for all τ ∈ J.

Given t ∈ (t1, T ), we pick one ν ∈ J with t1 < ν < t and let h = t− ν. Let ε > 0
and j0 = j0(ε) > 0 be such that if j > j0 then

∫

Ω

|∇usj
(ν)|psj

(x)dx <
ε

L
.

We have that
d

dτ
φpsj

(x)(usj
(ν + τ)) =

〈
∂φpsj

(x)(usj
(ν + τ)), d

dτ
usj

(ν + τ)
〉

a.e. in (0, T ).
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Therefore

∫

Ω

Dsj

psj
(x) |∇usj

(ν + h)|psj
(x)dx+

∫

Ω

1
psj

(x) |usj
(ν + h)|psj

(x)dx

−
∫

Ω

Dsj

psj (x) |∇usj (ν)|psj
(x)dx−

∫

Ω

1
psj (x) |usj (ν)|psj

(x)dx

= φpsj
(x)(usj

(ν + h)) − φpsj
(x)(usj

(ν))

=
h∫

0

d

dτ
φpsj

(x)(usj
(ν + τ)) dτ

=
h∫

0

〈
∂φpsj

(x)(usj
(ν + τ)), d

dτ
usj

(ν + τ)
〉
dτ

=
h∫

0

〈
fsj

(ν + τ) − d

dτ
usj

(ν + τ), d
dτ
usj

(ν + τ)
〉
dτ

=
h∫

0

〈
fsj

(ν + τ), d
dτ
usj

(ν + τ)
〉
dτ

−
h∫

0

〈
d

dτ
usj

(ν + τ), d
dτ
usj

(ν + τ)
〉
dτ

≤ 1
2

h∫

0

∥fsj
(ν + τ)∥2

H dτ − 1
2

h∫

0

∥∥∥∥
d

dτ
usj

(ν + τ)
∥∥∥∥

2

H

dτ

≤ 1
2

h∫

0

∥fsj
(ν + τ)∥2

H dτ ≤ 1
2

h∫

0

C2
0dτ = 1

2C
2
0h.

Thus,

∫

Ω

Dsj

psj (x) |∇usj (ν + h)|psj
(x)dx

≤
∫

Ω

Dsj

psj
(x) |∇usj

(ν)|psj
(x)dx+

∫

Ω

1
psj

(x) |usj
(ν)|psj

(x)dx+ 1
2C

2
0h.
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Therefore,
∫

Ω

|∇usj
(ν + h)|psj

(x)dx

≤ L

2

∫

Ω

|∇usj (ν)|psj
(x)dx+ L

2Dsj

∫

Ω

|usj (ν)|psj
(x)dx+ LC2

0h

2Dsj

.

So, using (2.3) and Lemma 3.5
∫

Ω

|∇usj (ν + h)|psj
(x)dx

≤ L

2

∫

Ω

|∇usj
(ν)|psj

(x)dx+ L

2Dsj

KL + LC2
0 |T − t1|
2Dsj

,

where K is the positive constant which appears in the Lemma 3.5.
Thus, choose j1 = j1(ε) sufficiently large such that

L

2Dsj

KL + LC2
0 |T − t1|
2Dsj

< ε/2,

whenever j > j1 and, moreover, we consider j2 = j2(ε) = max{j0, j1}. For j > j2
we have∫

Ω

|∇usj (t)|psj
(x)dx =

∫

Ω

|∇usj (ν + t− ν)|psj
(x)dx

≤ L

2

∫

Ω

|∇usj
(ν)|psj

(x)dx+ L

2Dsj

KL + LC2
0 |T − t1|
2Dsj

<
ε

2 + ε

2 = ε.

Thus, for j > j2

min{∥∇usj
(t)∥

p−
sj

psj
(x), ∥∇usj

(t)∥
p+

sj

psj
(x)} ≤

∫

Ω

|∇usj
(t)|psj

(x)dx < ε.

As psj (x) > 2, ∥∇usj (t)∥H ≤ 2(|Ω| + 1)∥∇usj (t)∥psj
(x) we obtain

∥ ∇usj
(t) ∥H→ 0 as j → ∞.

Analogously we conclude that ∥ ∇vsj
(t) ∥H→ 0 as j → ∞.

Proposition 4.2. If (us, vs) is a solution of problem (1.1) in (0, t1), then for each
t ∈ [0, t1], the sequences {∥∇us(t)∥p}s∈N and {∥∇vs(t)∥q}s∈N remain bounded as
s → ∞ whenever the initial values will be such that ∥u0s∥Xs

+∥v0s∥Ys
≤ C for all s ∈ N.

If the initial data are equal to a same constant, i.e., if (us(0), vs(0)) = (u0, v0) ∈ R×R
for each s ∈ N, then for each t ∈ [0, t1], the sequences of real numbers {∥∇us(t)∥p}s∈N
and {∥∇vs(t)∥q}s∈N converges to zero as s → ∞, respectively.
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Proof. In fact, let (us, vs) be a solution of problem (1.1) in (0, t1). Therefore, there are
fs, gs ∈ L1(0, t1;H), with fs(t) ∈ F (us(t), vs(t)), gs(t) ∈ G(us(t), vs(t)) a.e. in (0, t1),
such that (us, vs) is a solution of the system:





dus

dt +Asus = fs in (0, t1),
dvs

dt +Bsvs = gs in (0, t1),
us(0) = u0s, vs(0) = v0s.

Taking the inner product of the first equation with ∂us(t)
∂t , we obtain

∥∥∥∥
∂us(t)
∂t

∥∥∥∥
2

H

+ d

dt
φps(x)(us(t)) =

〈
fs(t), ∂us(t)

∂t

〉

≤ ∥fs(t)∥H

∥∥∥∥
∂us(t)
∂t

∥∥∥∥
H

≤ 1
2∥fs(t)∥2

H + 1
2

∥∥∥∥
∂us(t)
∂t

∥∥∥∥
2

H

.

In particular,
d

dt
φps(x)(us(t)) ≤ 1

2∥fs(t)∥2
H . (4.6)

Since ∥u0s∥Xs + ∥v0s∥Ys ≤ C for all s ∈ N, using (2.6) we have that the initial values
are in a bounded set of H × H. Using Lemma 3.4 and the fact that F and G take
bounded sets of H ×H in bounded sets of H, it follows that there exists a positive
constant C such that ∥fs(t)∥2

H ≤ C for all t ∈ [0, t1] and s ∈ N. Computing the integral
from 0 to τ , τ ∈ [0, t1] in (4.6), we obtain

φps(x)(us(τ)) ≤ φps(x)(u0s) + 1
2Ct1

for all τ ∈ [0, t1] and s ∈ N. Therefore,

Ds

∫

Ω

1
ps(x) |∇us(τ)|ps(x)dx+

∫

Ω

1
ps(x) |us(τ)|ps(x)dx

≤ Ds

∫

Ω

1
ps(x) |∇u0s|ps(x)dx+

∫

Ω

1
ps(x) |u0s|ps(x)dx+ 1

2Ct1,

for all τ ∈ [0, t1] and s ∈ N. As a consequence,
∫

Ω

|∇us(τ)|ps(x)dx ≤ L

2

∫

Ω

|∇u0s|ps(x)dx+ L

2Ds

(∫

Ω

|u0s|ps(x)dx+ Ct1

)
,

for all τ ∈ [0, t1] and s ∈ N. Analogously we prove that
∫

Ω

|∇vs(τ)|qs(x)dx ≤ L

2

∫

Ω

|∇v0s|qs(x)dx+ L

2Ds

(∫

Ω

|v0s|qs(x)dx+ Ct1

)
.

Since ps(x) ≥ p, qs(x) ≥ q and ∥u0s∥Xs + ∥v0s∥Ys ≤ C for all s ∈ N the result follows
by using (2.3).
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Theorem 4.1 confirms that the equation (4.1) is a good candidate for the limit
problem.

Lemma 4.3 ([23]). The problem (4.1) has a global solution.

Theorem 4.4 ([23]). The problem (4.1) defines a generalized semiflow G∞ which has
a global B-attractor A∞.

The next result guarantees that (4.1) is in fact the limit problem for (1.1),
as s → ∞.

Theorem 4.5. Let (us, vs) be a solution of the problem (1.1). Suppose that the
initial values (us(0), vs(0)) = (u0s, v0s) → (u0, v0) ∈ R × R in the topology of H ×H
as s → ∞. Then there exists a solution (u, v) of the problem (4.1) satisfying (u(0), v(0))
= (u0, v0) and a subsequence {(usj

, vsj
)}j of {(us, vs)}s such that, for each T > 0,

usj → u, vsj → v in C([0, T ];H) as j → ∞.

Proof. Let T > 0 be fixed arbitrarily large. Let (us, vs) be a solution of the problem
(1.1) with (us(0), vs(0)) = (u0s, v0s) → (u0, v0) ∈ R×R in H×H as s → ∞. Therefore,
there are fs, gs ∈ L1(0, T ;H), with

fs(t) ∈ F (us(t), vs(t)), gs(t) ∈ G(us(t), vs(t)) a.e. in (0, T ),

and such that (us, vs) is a solution of the system (4.7) below:




dus

dt +Asus = fs in (0, T ),
dvs

dt +Bsvs = gs in (0, T ),
us(0) = u0s, vs(0) = v0s.

(4.7)

We denote I(u0s)fs(·) := us(·) and I(v0s)gs(·) := vs(·) and also denote by
I(u0)fs(·) := zs(·) and I(v0)gs(·) := ws(·) being the corresponding solutions of the
problems {

dzs

dt +Aszs = fs,

zs(0) = u0,
(4.8)

and {
dws

dt +Bsws = gs,

ws(0) = v0,

respectively.
Taking the inner product of the first equation in (4.7) with us and computing

the integral from 0 to t, t ≤ T , we obtain

1
2 ∥ us(t) ∥2

H≤ 1
2 ∥ u0s ∥2

H +
t∫

0

⟨fs(τ), us(τ)⟩dτ.
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As {u0s} is a convergent sequence, we have that there exists a positive constant R
such that ∥ u0s ∥2

H≤ R2. Thus,

1
2 ∥ us(t) ∥2

H≤ 1
2R

2 +
t∫

0

⟨fs(τ), us(τ)⟩dτ.

Using the hypothesis that the couple (F,G) is positively sublinear and Gronwall’s
inequality we obtain that there exist positive constants α, β, γ and C such that

∥ us(t) ∥H≤ C + γ T +
t∫

0

[α ∥ us(τ) ∥H +β ∥ vs(τ) ∥H ]dτ.

So, there is a positive constant M independent of t ∈ [0, T ] such that

∥ us(t) ∥H≤ M +
t∫

0

[α ∥ us(τ) ∥H +β ∥ vs(τ) ∥H ]dτ.

Analogously, there exists a positive constant M̃ independent of t ∈ [0, T ] such that

∥ vs(t) ∥H≤ M̃ +
t∫

0

[β ∥ us(τ) ∥H +α ∥ vs(τ) ∥H ]dτ.

Adding these two inequalities and denoting by N := M + M̃ and ρ := α + β
we have

∥ us(t) ∥H + ∥ vs(t) ∥H≤ N + ρ

t∫

0

[∥ us(τ) ∥H + ∥ vs(τ) ∥H ]dτ

and so it follows by the Gronwall–Bellman inequality that

∥ us(t) ∥H + ∥ vs(t) ∥H≤ NeρT ,

for all t ∈ [0, T ] and for all s ∈ N.
As F and G map bounded sets of H ×H into bounded sets of H, it follows by the

inequality above that there exists D > 0 such that

∥ fs(t) ∥H ≤ D and ∥ gs(t) ∥H ≤ D for all t ∈ [0, T ] and s ∈ N. (4.9)

Consider K := {fs; s ∈ N}, K̃ := {gs; s ∈ N}, M(K) := {zs; s ∈ N} and
M(K̃) := {ws; s ∈ N}. It follows by (4.9) that K and K̃ are uniformly integrable
subsets of L1(0, T ;H).
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By using compactness results we obtain that M(K) is a relatively compact set
in C([0, T ];H) and so there are z ∈ C([0, T ];H) and a subsequence {zsj } of {zs} such
that zsj → z in C([0, T ];H).

As each zsj
is a solution of (4.8) in (0, T ), then by Proposition 3.6 in [7],

zsj
verifies

1
2 ∥ zsj

(t) − θ ∥2≤ 1
2 ∥ zsj

(ℓ) − θ ∥2 +
t∫

ℓ

⟨fsj
(τ) − yj , zsj

(τ) − θ⟩dτ (4.10)

for all θ ∈ D(Asj ) ⊂ W 1,psj
(·)(Ω) ⊂ H, yj = Asj (θ) and for all 0 ≤ ℓ ≤ t ≤ T .

Analogously, we can show that there exists w ∈ C([0, T ];H) and there exists
a subsequence {wsj } of {ws} such that wsj → w in C([0, T ];H), verifying

1
2 ∥ wsj

(t) − θ ∥2≤ 1
2 ∥ wsj

(ℓ) − θ ∥2 +
t∫

ℓ

⟨gsj
(τ) − yj , wsj

(τ) − θ⟩dτ (4.11)

for all θ ∈ D(Bsj ) ⊂ W 1,qsj
(·)(Ω) ⊂ H, yj = Bsj (θ) and for all 0 ≤ ℓ ≤ t ≤ T .

As ∥ fsj
(τ) ∥H≤ D and ∥ gsj

(τ) ∥H≤ D for all 0 ≤ τ ≤ T and for all j ∈ N,
we conclude that there exists a positive constant D̃ such that ∥ fsj

∥L2(0,T ;H)≤ D̃ and
∥ gsj

∥L2(0,T ;H)≤ D̃, for all j ∈ N.
As L2(0, T ;H) is a reflexive Banach space, there are f, g ∈ L2(0, T ;H) and sub-

sequences, which we do not relabel, {fsj } and {gsj } such that fsj ⇀ f and gsj ⇀ g
in L2(0, T ;H). Consequently fsj ⇀ f and gsj ⇀ g in L1(0, T ;H).
Statement 1. usj → z and vsj → w in C([0, T ];H). Moreover, f(t) ∈ F (z(t), w(t))
and g(t) ∈ G(z(t), w(t)) a.e. in [0, T ].

Indeed, let t ∈ [0, T ]. We have

∥ usj
(t) − z(t) ∥H≤∥ usj

(t) − zsj
(t) ∥H + ∥ zsj

(t) − z(t) ∥H .

Therefore,

sup
t∈[0,T ]

∥ usj
(t) − z(t) ∥H ≤ sup

t∈[0,T ]
∥ I(u0sj

)fsj
(t) − I(u0)fsj

(t) ∥H

+ sup
t∈[0,T ]

∥ zsj
(t) − z(t) ∥H

≤∥ u0sj − u0 ∥H + sup
t∈[0,T ]

∥ zsj (t) − z(t) ∥H→ 0

as j → ∞. Thus usj
→ z in C([0, T ];H) as j → ∞. Analogously we show that vsj

→ w
in C([0, T ];H) as j → +∞. Then, by Theorem 3.3 in [13], f(t) ∈ F (z(t), w(t)) and
g(t) ∈ G(z(t), w(t)) a.e. in [0, T ].

Now consider θ ∈ R ⊂ H and let h := ϕp(θ) ∈ R ⊂ H. We consider

yj := Asj (θ) = −div(Dsj
|∇θ|psj

(x)−2∇θ) + |θ|psj
(x)−2θ.
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Note that D(Asj ) ⊃ R for all j ∈ N and since θ is a constant function ∇θ = 0,
so yj = |θ|psj

(x)−2θ. By (4.10), we know that

1
2 ∥ zsj

(t) − θ ∥2 ≤ 1
2 ∥ zsj

(ℓ) − θ ∥2 +
t∫

ℓ

⟨fsj
(τ) − yj , zsj

(τ) − θ⟩dτ

= 1
2 ∥ zsj

(ℓ) − θ ∥2 +
t∫

ℓ

⟨fsj
(τ) − h, zsj

(τ) − θ⟩dτ

+
t∫

ℓ

⟨h− yj , zsj (τ) − θ⟩dτ

(4.12)

for all 0 ≤ l ≤ t ≤ T and for all j ∈ N. We claim that
∫ t

ℓ
⟨h− yj , zsj

(τ) − θ⟩dτ → 0 as
j → ∞. In fact, for θ = 0 this is immediate and if θ ̸= 0 then for each τ > 0

|⟨h− yj , zsj (τ) − θ⟩| ≤
∫

Ω

(∣∣∣ |θ|p−1 − |θ|psj
(x)−1

∣∣∣
)

|zsj (τ)|dx+
∫

Ω

∣∣∣ |θ|p − |θ|psj
(x)
∣∣∣dx.

Since psj
(x) → p in L∞(Ω) as j → ∞ it follows by the Dominated Convergence

Theorem that ∫

Ω

∣∣∣ |θ|p − |θ|psj
(x)
∣∣∣dx → 0 as j → ∞.

On the other hand, using the Mean Value Theorem we obtain
∫

Ω

(∣∣∣ |θ|p−1 − |θ|psj
(x)−1

∣∣∣
)

|zsj (τ)|dx ≤
∫

Ω

|θ|τ(sj ,x) ln(|θ|)(psj (x) − p)|zsj (τ)|dx

where p < τ(sj , x) < psj
(x). Thus, considering p′

sj
(·) such that 1

psj
(x) + 1

p′
sj

(x) = 1 for
all x ∈ Ω, we have

∫

Ω

(∣∣∣ |θ|p−1 − |θ|psj
(x)−1

∣∣∣
)

|zsj
(τ)|dx

≤ ∥psj − p∥∞

∫

Ω

|θ|τ(sj ,x)+1|zsj (τ)|dx

≤ ∥psj
− p∥∞

[∫

Ω

1
p′

sj
(x) |θ|(τ(sj ,x)+1)p′

sj
(x)
dx+

∫

Ω

1
psj

(x) |zsj
(τ)|psj

(x)dx

]

≤ ∥psj
− p∥∞

[∫

Ω

|θ|(τ(sj ,x)+1)p′
sj

(x)
dx+ 1

2

∫

Ω

|zsj
(τ)|psj

(x)dx

]
.
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By Lemma 3.7 there exists a constant C > 0 such that
∫

Ω |zsj
(τ)|psj

(x)dx ≤ C for
every τ ∈ (ℓ, t) and j ∈ N.

On the other hand, as p+ 1 < τ(sj , x) + 1 < psj (x) + 1 < L+ 1 and 1 < qsj (x) < 2
we obtain

∫
Ω |θ|(τ(sj ,x)+1)p′

sj
(x)
dx ≤ C̃ for all j ∈ N. Thus, considering C̄ := C+ C̃ > 0,

we have
∫

Ω

(∣∣∣ |θ|p−1 − |θ|psj
(x)−1

∣∣∣
)

|zsj
(τ)|dx ≤ ∥psj

− p∥∞C̄ → 0 as j → ∞,

and we conclude that
t∫

ℓ

⟨h− yj , zsj (τ) − θ⟩dτ → 0 as j → ∞.

Thus, taking the limit as j → ∞, in (4.12) we obtain

1
2 ∥ z(t) − θ ∥2≤ 1

2 ∥ z(ℓ) − θ ∥2 +
t∫

ℓ

⟨f(τ) − h, z(τ) − θ⟩dτ (4.13)

for all θ ∈ R, h := ϕp(θ) and for all 0 ≤ ℓ ≤ t ≤ T .
In the same way we can show that

1
2 ∥ w(t) − θ ∥2≤ 1

2 ∥ w(ℓ) − θ ∥2 +
t∫

ℓ

⟨g(τ) − h,w(τ) − θ⟩dτ

for all θ ∈ R, h := ϕq(θ) and for all 0 ≤ ℓ ≤ t ≤ T .
Statement 2. z(t) and w(t) are independent of x, for each t > 0.

Indeed, let t > 0. We already know that zsj
(t) → z(t) in H. Since zsj

(0) = u0 for
all j ∈ N, then by Proposition 4.2 and Theorem 4.1 we have that ∥∇zsj

(t)∥H → 0
as j → ∞. We also have that zsj

(t) ∈ D(Asj ) ⊂ W 1,psj (Ω) ⊂ W 1,2(Ω). Then,
by the Poincaré–Wirtinger inequality (see [8])

∥zsj (t) − zsj (t)∥H ≤ C∥∇zsj (t)∥H → 0 as j → ∞,

where zsj
(t) := 1

|Ω|
∫

Ω zsj(t)(x) dx. Then,

∥z(t) − z(t)∥H ≤ ∥z(t) − zsj
(t)∥H + ∥zsj

(t) − zsj
(t)∥H

+ ∥zsj
(t) − z(t)∥H → 0 as j → ∞.

Thus z(t) = z(t). Analogously, we show that w(t) = w(t) and the assertion follows.
We already showed in the Statement 1 that f(t) ∈ F (z(t), w(t)) and g(t) ∈

G(z(t), w(t)) a.e. in (0, T ). Therefore f(t) and g(t) are independents on x, t-a.e.
in (0, T ).
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Thus, from (4.13)

1
2 |z(t) − θ|2|Ω| ≤ 1

2 |z(ℓ) − θ|2|Ω| +
t∫

ℓ

∫

Ω

(f(τ) − h)(z(τ) − θ) dx dτ.

Hence
1
2 |z(t) − θ|2 ≤ 1

2 |z(ℓ) − θ|2 +
t∫

ℓ

(f(τ) − h)(z(τ) − θ) dτ

for all θ ∈ R, h := ϕp(θ) and for all 0 ≤ ℓ < t ≤ T .
If t = ℓ = 0, we have z(0) = limj→∞ zsj

(0) = limj→∞ u0 = u0, and, therefore,
1
2 |z(0) − θ|2 = 1

2 |u0 − θ|2. Thus

1
2 |z(t) − θ|2 ≤ 1

2 |z(ℓ) − θ|2 +
t∫

ℓ

(f(τ) − h)(z(τ) − θ) dτ

for all θ ∈ R, h := ϕp(θ) and for all 0 ≤ ℓ ≤ t ≤ T .
In the same way,

1
2 |w(t) − θ|2 ≤ 1

2 |w(ℓ) − θ|2 +
t∫

ℓ

(g(τ) − h)(w(τ) − θ) dτ

for all θ ∈ R, h := ϕq(θ) and for all 0 ≤ ℓ ≤ t ≤ T .
So by the Proposition 3.6 in [7], we conclude that (z, w) is a weak solution of

problem (4.1) with (z(0), w(0)) = (u0, v0), but as f, g ∈ L2(0, T ;H) we have in fact
that (z, w) is a strong solution of problem (4.1).

Remark 4.6. The Theorem 4.5 remains valid without the hypothesis (u0, v0) ∈ R×R,
whenever (u0s, v0s) ∈ As for all s ∈ N, because in this case we prove, analogously as
was done in Lemma 4.1 in [24], that u0 and v0 are independent of x.

The proof of the next result is completely analogous as in [23], but for convenience
of the reader we give the proof.

Theorem 4.7. The family of attractors {As}s∈N associated with the problem (1.1) is
upper semicontinuous at infinity in the topology of H ×H.

Proof. Let {(u0s, v0s)}s∈N be an arbitrary sequence with

(u0s, v0s) ∈ As for all s ∈ N and Ds → ∞ as s → ∞.

By Corollary 3.6(c), there exists a subsequence, that we still denote the same, such
that (u0s, v0s) → (u0, v0) in H × H as s → ∞. By [11], it is enough to prove that
(u0, v0) ∈ A∞.
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Using the invariance of the attractors, Theorem 4.1 and Poincaré–Wirtinger’s
inequality, we can prove analogously to Lemma 4.1 in [24], that (u0, v0) ∈ R × R.

For each s ∈ N, consider ts > s, t1 < t2 < . . . < ts < . . .. By invariance
of the attractors, there are (xs, ys) ∈ As and solutions φs = (φs

1, φ
s
2) ∈ Gs with

φs(0) = (xs, ys) such that φs(ts) = (u0s, v0s) → (u0, v0) in H × H as s → ∞. Note
that

φs(ts) ∈ Ts(ts)(xs, ys) ∈ As, s ∈ N.

By the definition of generalized semiflow, for each s ∈ N, the translates (φs)ts also
are solutions, and we have (φs)ts(0) → (u0, v0) in H ×H as s → ∞.

Using Theorem 4.5, we obtain that there exists a solution g0 of the limit problem
(4.1) with g0(0) = (u0, v0) and a subsequence of

{
(φs)ts

}
s
, that we still denote the

same, such that

(φs)ts(t) → g0(t) in H ×H as s → ∞, for all t ≥ 0.

Now we consider the sequence {φs(ts − 1)}. Note that

φs(ts − 1) ∈ Ts(ts − 1)(xs, ys) ⊂
⋃

s

As

which is a precompact subset of H ×H, then, passing to a subsequence if necessary,

(φs)(ts−1)(0) = φs(ts − 1) → z1 in H ×H as s → ∞.

As for each s ∈ N, φs is a solution starting on the attractor As, we obtain by the
invariance of the attractors that the sequence of initial values

φs(ts − 1) ∈ As for all s ∈ N.

Thus, using Remark 4.6 and Theorem 4.5, we obtain that there exists a solution g1 of
the limit problem (4.1) with g1(0) = z1 and a subsequence of

{
(φs)(ts−1)

}
s
, that we

still denote in the same way, such that

(φs)(ts−1)(t) → g1(t) in H ×H as s → ∞, for all t ≥ 0.

Now note that g1
1 = g0, since for each t ≥ 0, we have

g1
1(t) = g1(t+ 1) = lim

s→∞
(φs)(ts−1)(t+ 1) = lim

s→∞
(φs)ts(t) = g0(t).

Proceeding inductively, we find for each r = 0, 1, 2, . . ., a solution gr ∈ G∞ with
gr(0) = zr such that g1

r+1 = gr. Given t ∈ R, we define g(t) as the common value
of gr(t + r) for r > −t. Then we have that g is a complete orbit for G∞ with
g(0) = g0(0) = (u0, v0).

Note that for each t ≥ 0, r = 0, 1, 2, . . ., we have that each

gr(t) = lim
s→∞

(φs)(ts−r)(t) and (φs)(ts−r)(t) ∈ As for all s ∈ N.
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Working with the coordinated functions and using the invariance of the attrac-
tors, Lemma 4.1 and the Poincaré–Wirtinger inequality, we can prove, analogously
to Lemma 4.1 in [24], that each gr(t) is independent on x. Consequently, we obtain that
g(t) is a constant function in x. As As ⊂ ⋃

s As, for all s ∈ N, we obtain that there
exists a constant C > 0 such that ∥gr(t)∥H×H ≤ C for all t ≥ 0 and r = 0, 1, 2, . . .
So, in particular, we have that g(t) is bounded in H×H. Then, there exists a constant
C̃ > 0 such that

|g(t)|R×R = 1
|Ω|1/2 ∥g(t)∥H×H ≤ C̃ for all t ∈ R.

So, we conclude that g : R → R × R is a complete bounded orbit for G∞

through (u0, v0).
Using Theorem 15 in [21], we obtain that (u0, v0) ∈ A∞.

The next result is a direct consequence of Theorem 4.7 and Corollary 3.6.

Corollary 4.8. The family of attractors {As}s∈N associated with the problem (1.1)
is upper semicontinuous at infinity in the topology of Lp(Ω) × Lq(Ω).

Proof. Let {as}s∈N be an arbitrary sequence with as ∈ As for each s ∈ N. We will
prove that there exists a∞ ∈ A∞ and a subsequence {ask

}k∈N such that ask
→ a∞

in the topology of Lp(Ω) × Lq(Ω).
By Theorem 4.7, distH×H(As,A∞) → 0 as s → ∞. Therefore, we have the existence

of a subsequence {ask
}k∈N and a∞ ∈ A∞ such that ask

→ a∞ in the topology of
H ×H.

By Corollary 3.6 item (b), ∥us(t)∥X + ∥vs(t)∥Y < r2, for all t ≥ t1 and s ∈ N,
where X = W 1,p(Ω), Y = W 1,q(Ω) and (us, vs) is any solution of problem (1.1). So,
using the invariance of the global attractors, we have that there exists a bounded set
B ⊂ X × Y such that As ⊂ B for all s ∈ N. (Observe that as Ω is a bounded domain,
we can also consider, without loss of generality, that A∞ ⊂ B).

So, the subsequence {ask
}k∈N is bounded in X × Y and therefore, since

X × Y ↪→ Lp(Ω) × Lq(Ω) is compact, there exists another subsequence, that we still
denote by {ask

}k∈N and a∞ ∈ Lp(Ω) × Lq(Ω) such that ask
→ a∞ in Lp(Ω) × Lq(Ω).

Since Lp(Ω) ×Lq(Ω) ↪→ H ×H, we also have ask
→ a∞ in H ×H. By the uniqueness

of the limit, we have a∞ = a∞ ∈ A∞ and the convergence is also in Lp(Ω) × Lq(Ω).
This implies that

distLp(Ω)×Lq(Ω)(As,A∞) → 0 as s → ∞.

5. FINAL REMARKS

Remark 5.1. Note that if ps(·) ≡ p and qs(·) ≡ q the family of attractors is also
lower semicontinuous since each solution of (4.1) is also a solution of (1.1). For the
general case of a variable exponent, lower semicontinuity is an open problem.
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Remark 5.2. In the works [6, 32], the authors considered families of equations with
ps → 2. This is also a point that could be considered for the coupled system in future
works. Note that p > 2 was essential to guarantee that the limit problem is dissipative.
Even for the simple case of one equation

{
u̇(t) + u(t) = αu(t), t > 0,
u(0) = u0 ∈ R,

(5.1)

with α > 1 a real number, the solution is u(t) = u0e
(α−1)t and we have |u(t)| → ∞ as

t → ∞. In this case a global B-attractor for the problem (5.1) does not exist.

Remark 5.3. By using Faedo–Galerkin method and working with a space W
of functions in L2(Ω) having gradients in Lp(x)(Ω) one could try to prove existence of
solution for the following system:




∂us

∂t − div(Ds|∇us|ps(x)−2∇us) + |us|σs(x)−2us ∈ F (us, vs), t > 0, x ∈ Ω,
∂vs

∂t − div(Ds|∇vs|qs(x)−2∇vs) + |vs|µs(x)−2vs ∈ G(us, vs), t > 0, x ∈ Ω,
∂us

∂n (t, x) = ∂vs

∂n (t, x) = 0, t ≥ 0, x ∈ ∂Ω,
us(0, x) = u0s(x), vs(0, x) = v0s(x), x ∈ Ω,

(5.2)
with p−

s , q
−
s , σ

−
s , µ

−
s ≥ 1 and p+

s , q
+
s , σ

+
s , µ

+
s ≤ L, for all s ∈ N. It is worth emphasizing

that this space W was used in [19] for a problem with one equation where we had
uniqueness of solution while the coupled system of inclusions is a worse case, we have
no guaranty of uniqueness of solution. This idea could be explored in further works.
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