PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

RIS-aided Multi-hop Backhauling for 5G/6G UAV-assisted Access Points

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Drones are considered to be an important part of future 6G telecommunication systems. Thanks to their quick deployment potential, they provide additional connectivity options in the form of a flying hotspot. However, in such use cases, they typically require a wireless backhaul link to facilitate their proper operation, which might be a challenging task in dense urban environments. One of the potential methods that may be relied upon to connect such nodes is the integrated access and backhaul (IAB) approach, where part of the spectrum allocated to users accessing the base station is used for wireless backhauling. Thus, in this work, we consider the problem of establishing a multi-hop wireless backhaul link following the IAB concept, with the aid of drone relay stations (DRSs) and reconfigurable intelligent surfaces (RISs). We formulate the problem of coverage improvement with a fixed number of relays, assuming certain throughput requirements for the backhaul link. The simulations show that the use of RISs offers a coverage improvement in such a scenario or a reduction in the number of nodes involved in ensuring the required backhaul performance.
Słowa kluczowe
EN
Rocznik
Tom
Strony
63--69
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Radiocommunications, Poznan University of Technology, Poznan, Poland
autor
  • Institute of Radiocommunications, Poznan University of Technology, Poznan, Poland
Bibliografia
  • [1] M. Jaber, M.A. Imran, R. Tafazolli, and A. Tukmanov, "5G backhaul challenges and emerging research directions: A survey", IEEE Access, vol. 4, pp. 1743–1766, 2016 (https://doi.org/10.1109/ACCESS.2016.2556011).
  • [2] P. Fabian, G.Z. Papadopoulos, P. Savelli, and B.A. Cousin, "Performance evaluation of integrated access and backhaul in 5G networks", 2021 IEEE Conference on Standards for Communications and Networking (CSCN), Thessaloniki, Greece, pp. 88–93, 2021 (https://doi.org/10.1109/CSCN53733.2021.9686110).
  • [3] U. Challita and W. Saad, "Network formation in the sky: unmanned aerial vehicles for multi-hop wireless backhauling", in Proceeding of IEEE GLOBECOM, Singapore, 2017 (https://doi.org/10.1109/GLOCOM.2017.8254715).
  • [4] X. Zhang, J. Wang, and H.V. Poor, "Joint optimization of IRS and UAV-trajectory: For supporting statistical delay and error-rate bounded QoS over mURLLC-driven 6G mobile wireless networks using FBC", IEEE Vehicular Technology Magazine, vol. 17, no. 2, pp. 55–63, 2022 (https://doi.org/10.1109/MVT.2022.3158047).
  • [5] Y. Liu et al., "Reconfigurable Intelligent Surfaces: Principles and Opportunities", IEEE Communications Surveys and Tutorials, vol. 23, no. 3, pp. 1546–1577, 2021 (https://doi.org/10.1109/COMST. 2021.3077737).
  • [6] S.A.H. Mohsan et al., "Intelligent reflecting surfaces assisted UAV communications for massive networks: Current trends, challenges, and research directions", Sensors, vol. 22, no. 14, art. no. 5278, 2022 (https://doi.org/10.3390/s22145278).
  • [7] S. Janji, A. Samorzewski, M. Wasilewska, and A. Kliks, "On the placement and sustainability of drone FSO backhaul relays", IEEE Wireless Communications Letters, vol. 11, no. 8, pp. 1723–1727, 2022 (https://doi.org/10.1109/LWC.2022.3178546).
  • [8] A. Fouda, A.S. Ibrahim, I. Guvenc, and M. Ghosh, "UAV-based inband integrated access and backhaul for 5G communications", 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, USA, pp. 1–5, 2018 (https://doi.org/10.1109/VTCFall.2018 .8690860).
  • [9] M.A. Abdel-Malek, A.S. Ibrahim, M. Mokhtar, and K. Akkaya, "UAV positioning for out-of-band integrated access and backhaul millimeter wave network", Physical Communication, vol. 35, 2019 (https://doi.org/10.1016/j.phycom.2019.100721).
  • [10] C. Pan et al., "Joint 3D UAV placement and resource allocation in software-defined cellular networks with wireless backhaul", IEEE Access, vol. 7, pp. 104279–104293, 2019 (https://doi.org/10.1109/ACCESS.2019.2927521).
  • [11] Z. Wang, F. Zhou, Y. Wang, and Q. Wu, "Joint 3D trajectory and resource optimization for a UAV relay-assisted cognitive radio network", China Communications, vol. 18, no. 6, pp. 184–200, 2021 (https://doi.org/10.23919/JCC.2021.06.015).
  • [12] P. Li and J. Xu, "UAV-enabled cellular networks with multi-hop backhauls: Placement optimization and wireless resource allocation", 2018 IEEE International Conference on Communication Systems (ICCS), Chengdu, China, pp. 110–114, 2018 (https://doi.org/10.1109/ICCS.2018.8689218).
  • [13] H.-B. Jeon et al., "RIS-assisted aerial backhaul system for UAV-BSs: An energy-efficiency perspective", 2021 IEEE Global Communitions Conference (GLOBECOM), Madrid, Spain, pp. 1–6, 2021 (https://doi.org/10.1109/GLOBECOM46510.2021.9685565).
  • [14] E.M. Mohamed, M. Alnakhli, S. Hashima, and M. Abdel-Nasser, "Distribution of multi mmWave UAV mounted RIS using budget constraint multi-player MAB", Electronics, vol. 12, no. 1, 2023 (https://doi.org/10.3390/electronics12010012).
  • [15] P. Agyapong et al., "ICT-317669-METIS/D6.1 Simulation Guilines", ICT-317669-METIS, Oct. 2013.
  • [16] T.S. Rappaport et al., "Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications", IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 1850–1859, 2013 (https://doi.org/10.1109/TAP.2012.2235056).
  • [17] M.A. Kishk and M.-S. Alouini, "Exploiting randomly located blockages for large-scale deployment of intelligent surfaces", IEEE Journal on Selected Areas in Communications, vol. 39, no. 4, pp. 1043–1056, 2021 (https://doi.org/10.1109/JSAC.2020.3018808).
  • [18] P. Mogensen et al., "LTE capacity compared to the Shannon bound", 2007 IEEE 65th Vehicular Technology Conference (VTC2007), Dublin, Ireland, pp. 1234–1238, 2007 (https://doi.org/10.1109/VETECS.2007.260).
  • [19] 3GPP, 5G, NR User Equipment (UE) Radio Access Capabilities, Document 3GPP TS38.306 v.17.2.0, Release 17, 2022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bf610ef-3640-450c-9d46-8cf966ce189a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.