Identyfikatory
Warianty tytułu
Konferencja
Symposium “Vibrations In Physical Systems” (26 ; 04-08.05.2014 ; Będlewo koło Poznania ; Polska)
Języki publikacji
Abstrakty
Construction of a generalized hyperbolic model of sediment dynamics predicting a sediment evolution on the bottom surface with a finite velocity is presented. The transport equation is extended with introducing a generalized operator of flux change and a generalized operator of gradient. Passing to the convenient model is a singular degeneration of extended model. In this case the results are obtained in the class of generalization solutions. Some expressive examples of constructions of hyperbolic models predicting a finite velocity of disturbance propagation are presented. This problem is developed starting from Maxwell (1861). His approach in the theory of electromagnetism and the kinetic theory of gases is commented. A brief review on propagation of heat and diffusive waves is presented. The similar problems in the theory of probability and diffusion waves are considered. In particular, it was shown on the microscopic level for metals that the conservation law can be violated.
Czasopismo
Rocznik
Tom
Strony
243--250
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
- Department of Wave Processes, Institute of Hydromechanics NASU, Sheliabov Str. 8/4, Kiev, Ukraine; 03680
Bibliografia
- 1. B. A. Shulyak, Physics of waves on a surface of loose medium and a liquid, М.: Nauka 1971.
- 2. V. V. Longinov, Outlines of ocean lithdynamics, М.: Nauka 1973.
- 3. I. Selezov, R. Volynski, Wave refraction and sediment dynamics modeling in coastal zone, Kiev: SMP “AVERS” 2013.
- 4. Е. I. Ignatov, V. A. Robsman,, Problems of mathematical modeling of coastal morphosystem, In Issue 149. Sea Coast. Geography Problems. M.: Mysl, (1982) 40-54.
- 5. H. Zang, R. Kahawita,, Nonlinear hyperbolic system and its solution for aggraded channels, J. Hydraulic Reseach, 26, N 3 (1988) 323-342.
- 6. A. T. Hjelmfelt,, River bed degradation in the Missouri river loess hills, The 23rd Congress of Int. Association for Hydraulic Research (IAHR), Theme: Hydraulics and Environment. Proc. Technical Session B: Fluvial Hydraulics, Canada, Ottawa, (21–25 August 1989) B-233 – B-239.
- 7. I. T. Selezov,, Wave hydraulic models as mathematical approximations, Proc. 22th Congress, Int. Association for Hydraulic Research (IAHR), Lausanne, 1987. Techn. Session B., (1987) 301–306.
- 8. I. T. Selezov, The concept of hyperbolicity in the theory of controlled dynamical systems, Issue 1. Cybernetics and Computation Engineering. Kiev: Nauk. Dumka, (1969) 131–137.
- 9. O.A. Ladyzhenskaya, Boundary value problems of mathematical physics, M.: Nauka 1973.
- 10. I. C. Maxwell,, On the dynamical theory of gases, Phil. Trans. Roy. Soc., 157 (1867) 49-88.
- 11. I. T. Selezov,, Some degenerate and generalized wave models in elasto- and hydrodynamics, J. Appled Mathematics and Mechanics, 67, N 6 (2003) 871–877.
- 12. V. A. Fock,, Solution of one problem of the diffusion theory by finite difference method and its application to a light diffusion, Leningrad: Publ. State Optical Institute. (1926). § 13. Connection with differential equations and the expression for a diffusivity, 29-31.
- 13. M. Kac, Some stochastic problems in physics and mathematics, Collected Lectures in Pure and Applied Science, N 2, 1956.
- 14. A. D. Kolesnik, A. F. Turbin,, The equation of symmetric Markovian random evolutions in a plane, Stoch. Proc. Appl., 75 (1998) 67-87.
- 15. V. G. Andreev, P. I. Ulyakov,, Thermoelastic wave taking into account a velocity of heat propagation, Inzh.-Fiz. J, 21, № 1 (1971) 176-180.
- 16. A. V. Lykov, The theory of thermal conduction, М.: Higher School 1967.
- 17. Ch. Kittel, Introduction to solid state physics, John Wiley&Sons, 8th Editions 2005.
- 18. M. I. Kaganov, I. М. Lifshits, L. V. Tanatarov,, The relaxation between electrons and a lattice, J. Exper. Theor. Phys., 31 (1956) 232-237.
- 19. J. Z. M. Ziman, Electrons and fonons, Oxford: Clarendon Press 1960.
- 20. K. V. Lakusta, Yu. A. Timopheev,, Some estimations of boundaries of applicability of a hyperbolic heat conduction equation, Inzh.-Fiz. J., № 2 (1979) 366-370.
- 21. C. Körner, H. W. Bergmann,, The physical defects of the hyperbolic heat conduction equation, Appl. Phys. A: Mater. Sci. Process, 67 (1998) 397-401.
- 22. B. Vick, M. N. Ozisik,, Growth and decay of a thermal pulse predicted by the hyperbolic heat conduction equation, ASME J. Heat Transfer, 105 (1983) 902-907.
- 23. T. F. Mc Nelly,, Second sound in NaF: Onset of second sound, Phys. Reviews, 24(3) (1970) 100-102.
- 24. A. Mandelis,, Diffusion waves and their uses, Physics Today,(August 2000) 29-34.
- 25. V. S. L’vov, S. Nazarenko,, Discrete and mesoscopic regimes of finite-size wave turbulence, Physical Review, E82 (2010) 05322.
- 26. J. L. Maistrenko, A. N. Sharkovsky,, Turbulence and simple hyperbolic systems, Preprint. Institute of Mathematics, Acad. Sci. Ukr. SSR, № 2 (1984).
- 27. A. S. Monin,, On diffusion with a final velocity, Izv. Acad. Sci. USSR. Ser. Geophys., № 3 (1955) 234-248.
- 28. A. S. Monin,, On turbulent diffusion in a surface air, Izv. Acad. Sci. USSR. Ser. Geophys., № 12 (1956) 1461-1473.
- 29. F. S. Monin, F. M. Yaglom, Statistical hydromechanics. Part 1. М.: Science 1965, (10.6. Diffusion with a finite velocity).
- 30. I.T. Selezov, Construction of hyperbolic approximations of hydrodynamic equations, Hydromechnics, Issue 29 (1974) 3-7.
- 31. I. T. Selezov, Modeling of wave and diffraction processes in continuous media, Kiev: Nauk. Dumka 1989.
- 32. I. Selezov,, Some hyperbolic models for wave propagation, Hyperbolic Problems: Theory, Numerics, Applications. 7th Int. Conf. in Zurich, 1998, Vol. 2. Int. Ser. of Numerical Mathematics. Vol. 130 / Ed. by M. Fey and R. Jeltsch. – Basel / Switzerland: Birkhauser Verlag, Vol. 2 (1999) 833–842.
- 33. P. N. Vabishchevich,, Splitting schemes for hyperbolic heat conduction equation, BIT Number Math., (2013) DOI 10.1007/s10543-013-0423-7.
- 34. G. Birkhoff, Hydrodynamics. A study in logic, fact and similitude, Princeton University Press 1960.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bef95c3-1e84-46d7-aaeb-c7705c2ff4ef