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Abstract 

Construction of a generalized hyperbolic model of sediment dynamics predicting a sediment evolution on the 
bottom surface with a finite velocity is presented. The transport equation is extended with introducing a gener-
alized operator of flux change and a generalized operator of gradient. Passing to the convenient model is  a 
singular degeneration of extended model. In this case the results are obtained in the class of generalization 
solutions. Some expressive examples of constructions of hyperbolic models predicting a finite velocity of 
disturbance propagation are presented. This problem is developed starting from Maxwell (1861). His approach 
in the theory of electromagnetism and the kinetic theory of gases is commented. A brief review on  propagation 
of heat and diffusive waves is presented. The similar problems in the theory of probability and diffusion waves 
are considered. In particular, it was shown on the microscopic level for metals that the conservation law can be 
violated. 
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1. Introduction 

The problem of sediment reformation under the effect of water waves is referred directly 
to ocean lithodynamics [1, 2]. Thus interconnected processes of hydro- and lithomass 
transport occur under the wave action. Mathematical modeling of such processes in the 
shoreline zone on the basis of the classical approach is presented in [3]. 

We consider the generalized hyperbolic model of sediment evolution which predicts 
a finite velocity of sediment transport [3] unlike the convenient model of parabolic type 
predicting an infinite velocity of propagation of small perturbations.  

It is known that a real process of sediment transport occurs with a finite speed [4]. As 
it is shown in the natural observations, a velocity of transport of the energy and   sub-
stance mass  in the coastal zone is a finite magnitude. It can be noted that some investi-
gations  have been conducted for aggraded channels in [5] and for the channel degrada-
tion which fits to the observed degradation in [6]. 

The question, which is of great interest, is a comparison of possibilities and a physi-
cal content of “parabolic” and “hyperbolic” models of sediment dynamics in a coastal 
zone. A generalized hyperbolic model was firstly proposed in [7].  

Some examples are presented in this paper but the problems of thermoelasticity are 
not considered. 

2. Mathematical model 

Wave motion of the inviscid incompressible fluid of the variable depth in the rectangular 
Cartesian co-ordinate system (x, y, z) is considered. A plane z = 0 coincides with the 
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undisturbed free surface and an axis Oz is directed upwards. The ground surface can be 
deformed and it is described by the equation 

 ( ), ,dz H x y t= − . 

So the depth H(x, y, z, t) varies in time due to the sediment transport. Hereinafter a plane 
problem is considered corresponding to frontal incoming waves. 

The mathematical problem is formulated as follows: to determine the fluid depth  

H(x, z, t) and the energy flux vector ( ), ,Q Q x z t=
r r

 in the area TΩ = Σ × , where 

{ [ ]}3
1, | 0,R T t tΣ ⊂ = ∈ , as solutions of equations (1) and (2), which satisfy correspond-

ing boundary and initial conditions.  
The conservation law is written in the form 

 0
H

Q
t

∂
+ ∇⋅ =

∂

rr

. (1) 

The transport equation for the closure of the system, unlike the previous researches, 
is postulated in the generalized form [7] 

 LQ MH= −
r r

, (2) 

where the scalar operator L characterizes a flux change in time: 

 
( )

0 1 3 2 1 ...
2 1 times

t ttt n tt t
n

L γ γ γ γ +
+

≡ + ∂ + ∂ + ⋅⋅⋅+ ∂∂ , (3) 

with coefficients 0 1 3, , ,...γ γ γ , and a vector operator M
r

 is represented by the operator 

of gradient type: 

 2 2
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n
nM k k k k +≡ + ∇ + ∇∇ +⋅⋅⋅+ ∇∇

rr r r r

 (4) 

with coefficients 0 1 3, , ...k k k
rrrr

. 

Keeping operators to a certain order generates a set of the generalized hyperbolic 
models [8]. 

In the case when all the terms in (3) are equal to zero except γ1, i.e. γ0 = 0, γ1 ≠ 0, 
γ3 − 0,..., γ2n+1 = 0, and all the terms in (4) are equal to zero except k1, i.е. 

( )0 1 3 2 10, 0, 0,..., 0 1, 2,....nk k k k n+= ≠ = = =
r

, we obtain the known parabolic 

model of sediment evolution. However if all the operators remain to a certain order s, in 
(3), (4), in that case we obtain a set of the generalized hyperbolic models [7].  

For the case n = 1 from relations (3), (4) the elementary hyperbolic model can be de-
rived in the form 

 
2

2
2 2

11

1 1
0

H H
H

k tc t

∂ ∂
∇ − − =

∂∂
, (5) 

where c1 is the speed of propagation of disturbance, which is defined as 1 1 /c k η= , η is 

the relaxation parameter, k1 is the kinematic viscosity. 
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In the classical case, when relaxation parameter η tends to zero, equation (5) is de-
generates into (6) and for the depth H(x, y, t) we obtain the equation of parabolic type  

 2

1

1
0

H
H

k t

∂
∇ − =

∂
, (6) 

which satisfies the conservation law and is used in all traditional studies [3]. In what 
follows consider the case of frontal approach  waves (plane problem). 

3. Singular degeneration 

Statement of the initial boundary value (IBV) problem for the equation (5) has the form 

 1tt t xxH H k Hε + = ,  (7) 

 ( )00t
H u x

=
= ,   ( )10t t

H H x
=

= ,   
0 1

0
x x

H H
= =

= = , (8) 

where ε is the small parameter, ε = η. 
We investigate the singular degeneracy problem (7), (8) with 0ε → . Called a gener-

alized solution of problem (7), (8) the function H  из ( )11
20 TW Q of satisfying to integral 

identity  
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∫

 (9) 

where ( ) [ ]0, 1 , 0,TQ TΩ = = ×Ω . 

For the generalized solution of the problem (7), (8) the theorem is true: if 

( ) ( )1 2H x L∈ Ω , ( ) ( )
0

1
0 2u x W∈ Ω , then for the problem (7), (8) there exists a  unique 

generalized solution. The proof of solvability  is given in [9]. 
Passing in (7) to the limit at 0ε → , we can obtain the identity that is a solution of 

the problem  
 1t xxH k H= , 

 ( )0 10 0
, 0.xt x

H u x H H == =
= = =  (10) 

Thus, we arrive to the following theorem: a Generalized solution of the problem (7), 
(8) passes at 0ε →  to the generalized solution of the problem (6). 

4. Some examples 

A finite propagation velocity of electromagnetic waves. A development of the general-
ized models originates from the works of Maxwell. He was the first who realized the 
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FV-principle (the principle of the propagation velocity finiteness of perturbation) at the 
development of the electromagnetic field model (1861-1864), and then he has general-
ized this principle to the theory of gases [10]. 

We consider Maxwell's equations for the nonconducting homogeneous isotropic me-
dium. Before the Maxwell work the following system of equations described a 
perturbation propagation with the infinite velocity 

 0H∇× =
r rr rr rr r

,   
B

E
t

∂
∇ × = −

∂

rrrr
r rr rr rr r

, 

 0B∇× =
r rr rr rr r

,   0D∇ × =
r rr rr rr r

, (11) 

 B Hµ=
r rr rr rr r

,   D Eε=
r rr rr rr r

. 

After the Maxwell work the system of equations describes a perturbation propagation 
with the finite velocity, which equals to the speed of light 
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 B Hµ=
r rr rr rr r
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. 

The system (12) can be reduced to the hyperbolic equation (wave equation) 

 
2

2
2 2

1
0

e

H

c t E

  ∂  
∇ − =    ∂     

rrrr

rrrr , (13) 

where 1/ec µε=  is the speed of light. 

A comparison of (11) and (12) shows that (12) differs from (11) by a symmetry. 
From the mathematical point of view this procedure is an expansion of the nonhyperbol-
ic differential operator to the hyperbolic one [11]. 

Heat propagation [10]. The transport equation following from the kinetic theory of 
gases is represented as 

 1 q k
t

ξ θ
∂ + = − ∇ ∂ 

rrrrrrrr
, (14) 

and the conservation equation can be taken in the form 

 m q
t

θ
γ

∂
= −∇ ⋅

∂

rrrr rrrr
. (15) 

The resolving equations for the flux q
rrrr

 and heat θ , following from (14) and (15), take 

the form 
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2

2
2
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q q
k k tt
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 ∂
∇ − − =  ∂ 

, (17) 

where the propagation speed is equal to /mc m kξγ= , for example, 150mc =  m/s for 

nitrogen. 
Fock (1926) [12] considers probabilities u(x,t) of light particles to be at time t  in the 

point x and to move upwards, and probabilities v(x,t) of light particles to be at the same 
place, but to move downwards. As a result functions u and v satisfy to the hyperbolic 
equation  

 
2 2

2 2 2

1 1U U U

D tx c t

∂ ∂ ∂
= +

∂∂ ∂
. (18) 

Presence of the term 
2

2 2

1 U

c t

∂

∂
 in (18) shows, that any perturbation and concentration 

inhomogeneities are spread with a finite velocity c. But after these inhomogeneities have 
smoothed out (that happens quickly, if a velocity c is large), the further process differs a 
little from the process, which is described by the usual diffusion equation  

 
2

2

1U U

D tx

∂ ∂
=

∂∂
. (19) 

Later on for more extended discussion this result considered by  Kac (1956) [13] and 
announced again in [14]. 

It is well known that the classical theory of the thermoconductivity is based on the 
Fick law. According to this law the heat flux q is directly proportional to the gradient of 
temperature T: 

 
T

q k
x

∂
= −

∂
, (20) 

where k is the heat conductivity coefficient. This law leads to the heat conduction equa-
tion of parabolic type 

 
2

2

T T
k

t x

∂ ∂
=

∂ ∂
. (21) 

It follows from (20) and (21) that the heat flux is directed from areas with a high temper-
ature to areas with a low temperature. Thus, the infinite large propagation speed of tem-
perature perturbations is postulated. 

The hyperbolic heat conduction equation is investigated in [15] according to [16]. On 
the basis of the works [17] and [18] it is shown that a time of the mean free part of an 
electron with a velocity 106 m/s in metals is on 2-4 order less than the electron - photon 
relaxation time tp ∼10-11 s [19]. This value coincides well with a magnitude tp for alumin-
ium [16] and the velocity  

 pt tac /=  (22) 
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has a value of some kilometers per second, i.e. in the order of magnitude it is equal to the 
sound velocity (22). It leads to the hyperbolic heat conduction equation 

 
2

2 2
t

T a T
a T

t c t

∂ ∂
+ ⋅ = ∆

∂ ∂
. (23) 

In the work of [20] the estimation of the geometrical area has been carried out, when 
a thermal process is described by the hyperbolic equation (23) at the given initial and 
boundary conditions. It was shown that for a copper l = 0.0002 mm, for a cork l < 2 mm. 
This effect can be important for the armor penetration or for explosion. 

At the same time it should be noted that the analysis of propagation of thermal waves 
in metals at the microscopic level was conducted in the work [21]. It has been shown 
that generalization of the transport equation (Fourier’s law) by taking into account the 
relaxation time is inadmissible, as it leads to a violation of the fundamental law of ener-
gy conservation. 

For the case of the heat propagation within very short time intervals the classical 
equation should be substituted by the more general equation of hyperbolic type [22] 

 
2 2

2 2

T T T
k

tt x
τ

∂ ∂ ∂
+ =

∂∂ ∂
. (24) 

The calculations on the basis of the equation (24) and comparisons with the data of ex-
periments [22] have shown that in many cases, which are important for modern applica-
tions, the diffusion equation (21) leads to the rather underestimated values of tempera-
ture at the wave front. The qualitative effect consisting in the strong concentration of 
energy in a peak zone, which appears at the wave front, according to the hyperbolic 
equation, is also has been discovered. In the diffusion theory the energy is always 
“spread” on the whole area. Mc Nelly (1970) [23] obtained experimental results for 
dielectric crystals of sodium fluoride NaF. Distribution of thermal impulse (pulse height) 
as a function of arrival time (µs) shows clearly the presence of two front zones. 

There are some considerations about diffusion waves which lack wave fronts and 
don’t travel very far [24]. These considerations are based on revolutionary measurement 
thechnologies. 

Useful contribution to the study of wave propagation with a finite speed is presented 
in the works [25-32]. Recently, a numerical simulation of hyperbolic heat equation has 
been presented in [33]. It is remarkable that the similar situation also takes place in the 
classical mechanics. As it is known, the classical Galilei-Newton mechanics is a special 
case of the Einstein mechanics when the speed of light is considered as an infinite big 
magnitude. Such an analogy gives the grounds to pay much attention to the problem of 
the group transformations of dependent and independent variables [34], which considers 
diffusion and hyperbolic heat conduction equations as invariants. Similarly it could be 
expected, that the equations of “diffusion” and “hyperbolic” heat conduction could as-
sume various groups of transformations. 
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5. Conclusions 

A new generalized hyperbolic model for the evolution of sediment is presented. It pre-
dicts a finite speed of formation of bottom sediments unlike the traditional model of 
parabolic type , predicting infinite speed of propagation of small disturbances . This is 
consistent with field observations from which it follows that the rate of transport of en-
ergy and mass of the substance in the coastal zone is a finite quantity [4]. On the basis of 
the corresponding initial-boundary value problem, a singular degeneration of the gener-
alized hyperbolic model into traditional parabolic ones is carried out. The existence of 
generalized solutions is demonstrated. Some examples of generalization of parabolic 
models into hyperbolic ones starting from Maxwell ( 1867) are considered. 
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