PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The performance of ultra-lightweight foamed concrete incorporating nanosilica

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aims to investigate the feasibility of the incorporation of nanosilica (NS) in ultra-lightweight foamed concrete (ULFC), with an oven-dry density of 350 kg/m3, in regard to its fresh and hardened characteristics. The performance of various dosages of NS, up to 10 wt.-%, were examined. In addition, fly ash and silica fume were used as cement replacing materials, to compare their influence on the properties of foamed concrete. Mechanical and physical properties, drying shrinkage and the sorption of concrete were measured. Scanning electron microscopy (SEM) and X-ray microcomputed tomography (µ-CT) and a probabilistic approach were implemented to evaluate the microstructural changes associated with the incorporation of different additives, such as wall thickness and pore anisotropy of produced ULFCs. The experimental results confirmed that the use of NS in optimal dosage is an effective way to improve the stability of foam bubbles in the fresh state. Incorporation of NS decrease the pore anisotropy and allows to produce a foamed concrete with increased wall thickness. As a result more robust and homogenous microstructure is produced which translate to improved mechanical and transport related properties. It was found that replacement of cement with 5 wt.-% and 10 wt.-% NS increase the compressive strength of ULFC by 20% and 25%, respectively, when compared to control concrete. The drying shrinkage of the NS-incorporated mixes was higher than in the control mix at early ages, while decreasing at 28 d. In overall, it was found that NS is more effective than other conventional fine materials in improving the stability of fresh mixture as well as enhancing the strength of foamed concrete and reducing its porosity and sorption.
Rocznik
Strony
639--654
Opis fizyczny
Bibliogr. 52 poz., rys., wykr.
Twórcy
  • Building Materials and Construction Chemistry, Technische Universität Berlin, Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
  • Structural Engineering Department, Mansoura University, Elgomhouria St., Mansoura 35516, Egypt
autor
  • Building Materials and Construction Chemistry, Technische Universität Berlin, Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
  • Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
  • Building Materials and Construction Chemistry, Technische Universität Berlin, Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
Bibliografia
  • [1] Nguyen TT, Bui HH, Ngo TD, Nguyen GD. Experimental and numerical investigation of influence of air –voids on the compressive behavior of foamed concrete. Mater Des. 2017;130:103–19. https:// doi. org/ 10. 1016/j. matdes. 2017. 05. 054.
  • [2] She W, Yi Du, Miao C, Liu J, Zhao G, Jiang J, Zjang Y. Application of organic-and nanoparticle-modified foams in foamed concrete: reinforcement and stabilization mechanisms. Cem Concr Res. 2018;106:12–22. https:// doi. org/ 10. 1016/j. cemco nres. 2018. 01. 020.
  • [3] E.K. Kunhanandan Nambiar, K. Ramamurthy, “Air-void characterisation of foam concrete”, Cement and Concrete Resaearch 37 (2007) 221–230. Doi: https:// doi. org/ 10. 1016/j. cemco nres. 2006. 10. 009.
  • [4] Gong J, Zhang W. The effects of pozzolanic powder on foam concrete pore structure and frost resistance. Constr Build Mater. 2019;208:135–43. https:// doi. org/ 10. 1016/j. conbu ildmat. 2019. 02. 021.
  • [5] Chung S-Y. Mohamed Abd Elrahman, Ji-Su Kim, Tong-Seok Han, Dietmar Stephan, Pawel Sikora, “Comparison of light-weight aggregate and foamed concrete with the same density level using image-based characterizations.” Constr Build Mater. 2019;211:988–99. https:// doi. org/ 10. 1016/j. conbu ildmat. 2019. 03. 270.
  • [6] Kuzielova E, Pach L, Palou M. Effect of activated foaming agent on the foam concrete properties. Constr Build Mater. 2016;125:998–1004. https:// doi. org/ 10. 1016/j. conbu ildmat. 2016. 08. 122.
  • [7] Falliano D, De Domenico D, Sciarrone A, Ricciardi L, Restuccia L, Tulliani JMC, Gugliandolo E. Fracture behavior of lightweight foamed concrete: The crucial role of curing conditions. Theoret Appl Fract Mech. 2019;103:102297. https:// doi. org/ 10. 1016/j. tafmec. 2019. 102297.
  • [8] Mugahed Amran YH, Farzadnia N, Abang Ali AA Properties and applications of foamed concrete; a review. Construction Building Materials 101 (2015), 990–1005. Doi:https:// doi. org/ 10. 1016/j. conbu ildmat. 2015. 10. 112.
  • [9] Kim J-S, Chung S-Y, Lehmann C, Stephan D, Han T-S. Mohamed Abd Elrahman, “Modelling of multiple phase solid microstructures and prediction of mechanical behaviors of foamed concrete.” Constr Build Mater. 2020;248:118637. https:// doi. org/ 10. 1016/j. conbu ildmat. 2020. 118637.
  • [10] Chung S-Y, Kim J-S, Han T-S, Stephan D, Abd Elrahman M. Investigation of phase composition and microstructure of foamed cement paste with different supplementary cementing materials. Cement Concr Compos. 2020;109:103560. https:// doi. org/ 10. 1016/j. cemco ncomp. 2020. 103560.
  • [11] Kuzielová E, Žemlička M, Bača Ľ, Pach L. Preparation of light-weight foam concretes with bulk density less than 200 kg/m3. Cement Wapno Beton. 2018;5:369–78.
  • [12] Chung S-Y, Lehmann C, Abd Elrahman M, Stephan D. Microstructural characterization of foamed concrete with different densities using microscopic techniques. Cement Wapno Beton. 2018;3:216–25.
  • [13] Chung S-Y, Lehmann C, Abd Elrahman M, Stephan D. Pore characteristics and their effects on the material properties of foamed concrete evaluated using micro-CT images and numerical approaches. Appl Sci. 2017;7:550. https:// doi. org/ 10. 3390/ app70 60550.
  • [14] Elrahman MA, El Madawy ME, Chung S-Y, Majer S, Youssf O, Sikora P. An investigation of themechanical and physical characteristics of cement paste incorporating different air entraining agentsusing x-ray micro-computed tomography. Curr Comput-Aided Drug Des. 2020;10:23. https:// doi. org/ 10. 3390/ cryst 10010 023.
  • [15] Zhihua P, Hengzhi Li, Weiqing L. Preparation and characterization of super low density foamed concrete from Portland cement and admixtures. Constr Build Mater. 2014;72:256–61. https:// doi. org/ 10. 1016/j. conbu ildmat. 2014. 08. 078.
  • [16] Falliano D, De Domenico D, Ricciardi G, Gugliandolo E. Compressive and flexural strength of fiber-reinforced foamed concrete: effect of fiber content, curing conditions and dry density. Constr Build Mater. 2019;198:479–93. https:// doi. org/ 10. 1016/j. conbu ildmat. 2018. 11. 197.
  • [17] Falliano D, De Domenico D, Ricciardi G, Gugliandolo E. Experimental investigation on the compressive strength of foamed concrete: effect of curing conditions, cement type, foaming agent and dry density. Constr Build Mater. 2018;165:735–49. https:// doi. org/ 10. 1016/j. conbu ildmat. 2017. 12. 241.
  • [18] Huang Z, Zhang T, Wen Z. Proportioning and characterization of Portland cement-based ultra-lightweight foam concretes. Constr Build Mater. 2015;79:390–6. https:// doi. org/ 10. 1016/j. conbu ildmat. 2015. 01. 051.
  • [19] Roderick JM, Zheng Li, Ozlutas K. High-volume, ultra-low-density fly ash foamed concrete. Mag Concr Res. 2019;69:1146–56. https:// doi. org/ 10. 1680/ jmacr. 17. 00063.
  • [20] Hilal AA, Thom NH, Dawson AR. On void structure and strength of foamed concrete made without/with additives. Construction Building Materials. 2015;875:157–64. https:// doi. org/ 10. 1016/j. conbu ildmat. 2015. 03. 093.
  • [21] Xin W, Huang J, Dai S, Ma B, Jiang Qi. Investigation of silica fume as foam cell stabiliyer for foamed concrete. Constr Build Mater. 2020;237:117514. https:// doi. org/ 10. 1016/j. conbu ildmat. 2019. 117514.
  • [22] Roderick JM, McCarthy A. Preliminary views on the potential of foamed concrete as a structural material. Mag Concrete Res. 2005;57:21–31. https:// doi. org/ 10. 1680/ macr. 2005. 57.1. 21.
  • [23] Roslan AF, Awang H, Mydin MAO (2013) Effects of various additives on drying shrinkage, compressive and flexural strength of lightweight foamed concrete (LFC). Advanced Materials Res 626:594-604. Doi: https:// doi. org/ 10. 4028/ www. scien tific. net/ AMR. 626. 594.
  • [24] Chindaprasirt P, Rattanasak U. Shrinkage behavior of structural foam lightweight concrete containing glycol compounds and fly ash. Mater Des. 2011;32:723–7. https:// doi. org/ 10. 1016/j. matdes. 2010. 07. 036.
  • [25] Raj A, Sathyan D, Mini KM. Physical and functional characteristics of foamed concrete: a review. Construction BuildingMaterials. 2019;221:787–99. https:// doi. org/ 10. 1016/j. conbu ildmat. 2019. 06. 052.
  • [26] Chindaprasirt P, Rukzon S, Sirivivatnanon V. Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash. Constr Build Mater. 2008;22:932–8. https:// doi. org/ 10. 1016/j. conbuildmat. 2006. 12. 001.
  • [27] Chao Sun Yu, Zhu JG, Zhang Y, Sun G. Effects of foaming agent type on the workability, drying shrinkage, frost resistance and pore distribution of foamed concrete. Constr Build Mater. 2018;186:833–9. https:// doi. org/ 10. 1016/j. conbu ildmat. 2018. 08. 019.
  • [28] Ramamurthy K, Nambiar EK, Ranjani GI. A classification of studies on properties of foam concrete. Cement Concrete Composites. 2009;31:388–96. https:// doi. org/ 10. 1016/j. cemco ncomp. 2009. 04. 006.
  • [29] Mohamed AE, Madawy ME, Chung S-Y, Sikora P, Stephan D. Preparation and characterization of ultra lightweight foamed concrete incorporating lightweight aggregates. Appl Sci. 2019;9:1447. https:// doi. org/ 10. 3390/ app90 71447.
  • [30] Mohamed AE, Chung S-Y, Sikora P, Rucinska T, Stephan D. Influence of nanosilica on mechanical properties, sorptivity and microstructure of lightweight concrete. Materials. 2019;12:3078. https:// doi. org/ 10. 3390/ ma121 93078.
  • [31] Zhang J, Liu X. Research on the influence of carbon nanotubes (CNTs) on compressive strength and air-void structure of ultra-light foamed concrete. Mech Adv Mater Struct. 2019;26:2009–16. https:// doi. org/ 10. 1080/ 15376 494. 2018. 14755 83.
  • [32] Luo J, Hou D, Li Q, Caifeng Wu, Zhang C. Comprehensive performances of carbon nanotube reinforced foam concrete with tetraethyl orthosilicate impregnation. Constr Build Mater. 2017;131:512–6. https:// doi. org/ 10. 1016/j. conbu ildmat. 2016. 11. 105.
  • [33] Zhang J, Liu X. Dispersion performance of carbon nanotubes on ultra-light foamed concrete. Processes. 2018;6:194. https:// doi. org/ 10. 3390/ pr610 0194.
  • [34] Li Z, Gong J, Sen Du, Jianlin Wu, Li J, Hoffman D, Shi X. Nano-montmorillonite modified foamed paste with a high volume fly ash binder. RSC Adv. 2017;16:9803–12. https:// doi. org/ 10. 1039/ C6RA2 6968K.
  • [35] Krämer C, Schauerte M, Kowald TL, Trettin RHF. Three-phase-foams for foam concrete application. Mater Charact. 2015;102:173–9. https:// doi. org/ 10. 1016/j. match ar. 2015. 03. 004.
  • [36] Sikora P, Cendrowski K, Abd Elrahman M, Chung S-Y, Mijowska E, Stephan D The effects of seawater on the hydration, microstructure and strength development of Portland cement pastes incorporating colloidal silica. Appl Nanosci (2019). https://doi.org/https:// doi. org/ 10. 1007/ s13204- 019- 00993-8.
  • [37] Mohamed AE, Chung S-Y. Effect of different expanded aggregates on the properties of lightweight concrete. Mag Concrete Res. 2018;71:95–107. https:// doi. org/ 10. 1680/ jmacr. 17. 00465.
  • [38] Bossa N, Chaurand P, Vicente J, Borschneck D, Levard C, Chariol OA, Rose J. Micro- and nano-X-ray computed-tomography: a step forward in the characterization of the pore-network of a leached cement paste. Cem Concr Res. 2015;67:138–47. https:// doi. org/ 10. 1016/j. cemco nres. 2014. 08. 007.
  • [39] Yang Z, Ren W, Sharma R, et al. In-situ X-ray computed tomography characterisation of 3d fracture evolution and image-based numerical homogenisation of concrete. Cement Concr Compos. 2017;75:74–83. https:// doi. org/ 10. 1016/j. cemco ncomp. 2016. 10. 001.
  • [40] Chung S-Y, Kim J-S, Stephan D, Han T-S. Overview of the use of micro-computed tomography (micro-CT) to investigate the relation between the material characteristics and properties of cement-based materials. Constr Build Mater. 2019;229:116843. https:// doi. org/ 10. 1016/j. conbu ildmat. 2019. 116843.
  • [41] Moreno FG, Fromme M, Banhart J. Real-time X-ray radioscopy on metallic foams using a compact micro-focus source. Adv Eng Mater. 2004;6:416–20. https:// doi. org/ 10. 1002/ adem. 20040 5143.
  • [42] Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9:62–6.
  • [43] Huang D-Y, Wang C-H. Optimal multi-level thresholding using a two-stage Otsu optimization approach. Pattern Recogn Lett. 2009;30:275–84. https:// doi. org/ 10. 1016/j. patrec. 2008. 10. 003.
  • [44] Land G, Stephan D. The influence of nano-silica on the hydration of ordinary Portland cement. J Mater Sci. 2012;47:1011–7. https:// doi. org/ 10. 1007/ s10853- 011- 5881-1.
  • [45] Sikora P, Lootens D, Liard M, Stephan D. The effects of sea-water and nanosilica on the performance of blended cements and composites. Appl Nanosci. 2020. https:// doi. org/ 10. 1007/ s13204- 020- 01328-8.
  • [46] Nambiar EK, Ramamurthy K. Influence of filler type on the properties of foam concrete. Cement Concr Compos. 2006;28:475–80. https:// doi. org/ 10. 1016/j. cemco ncomp. 2005. 12. 001.
  • [47] Gokce HS, Hatungimana D, Ramyar K. Effect of fly ash and silica fume on hardened properties of foam concrete. Construction Building Materials. 2019;194:1–11. https:// doi. org/ 10. 1016/j. conbu ildmat. 2018. 11. 036.
  • [48] Nambiar EK, Ramamurthy K. Sorption characteristics of foam concrete. Cem Concr Res. 2007;37(9):1341–7. https:// doi. org/ 10. 1016/j. cemco nres. 2007. 05. 010.
  • [49] Kearsley EP, Wainwright PJ. The effect of porosity on the strength of foamed concrete. Cem Concr Res. 2002;32:233–9. https:// doi. org/ 10. 1016/ S0008- 8846(01) 00665-2.
  • [50] Tewari A, Gokhale AM, Spowart JE, Miracle DB. Quantitative characterization of spatial clustering in three-dimensional microstructures using two-point correlation functions. Acta Materials. 2004;52:307–19. https:// doi. org/ 10. 1016/j. actam at. 2003. 09. 016.
  • [51] Gokhale A, Tewari A, Garmestani H. Constraints on microstructural two-point correlation functions. Scripta Materials. 2005;53:989–93. https:// doi. org/ 10. 1016/j. scrip tamat. 2005. 06. 013.
  • [52] Chung S-Y, Elrahman MA, Stephan D, Kamm PH. Investigation of characteristics and responses of insulating cement paste specimens with Aer solids using X-ray micro-computed tomography. Constr Build Mater. 2016;118:204–15. https:// doi. org/ 10. 1016/j. conbu ildmat. 2016. 04. 159.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bea0ae0-8aad-4368-87e2-e89b781eb465
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.