PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Fly Ash Concrete With Scanning Electron Microscopy and X-Ray Diffraction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the effects of using different ratios of fly ash on hydration products as well as the mechanical and microstructural properties of hardened concrete were investigated. Portland cement was replaced with 5%, 10%, 15% and 20% fly ash (FA) by weight. The microstructural properties of the obtained samples were investigated by means of X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Fly ash has negative effect on 7 days concrete strength; however, it was seen that fly ash increases the compressive strength of 28 and 90 days concrete. The XRD analysis showed that the ratio of calcium hydroxide (CH), which is produced by hydration, decreases depending on the concrete age and the amount of fly ash. The SEM analysis showed that the usage of fly ash decreases gaps and increases C-S-H which is also a hydration production. When Portland cement was replaced with 10% fly ash by weight, compressive strength has increased and microstructure of concrete has improved. The reason for this is filling of gaps by fly ash and the decrease in the amount of Ca(OH)2 due to the reaction between fly ash and Ca(OH)2. Within this scope, the development in microstructure of fly ash concrete was evaluated in 90 days duration and a change of the development with compressive strength was investigated.
Twórcy
  • Department of Civil Engineering, Faculty of Engineering, Atatürk University, Erzurum, 25240, Turkey
  • Department of Civil Engineering, Faculty of Engineering, Atatürk University, Erzurum, 25240, Turkey
Bibliografia
  • 1. Topçu İ.B. (2016). Uçucu kül kullanımının betondaki etkileri. ResearchGate.
  • 2. Borowski G., Hycnar J.J. (2016). The effect of granulated fly ashes with phosphogypsum on the hardening of cement mortar. Technical Transactions – Civil Engineering, 113, 2-B (7), 37–45.
  • 3. Aydın A.C, Gül R. (2007). Influence of volcanic originated natural materials as additives on the setting time and some mechanical properties of concrete. Construction and Building Materials, 21, 1277–1281.
  • 4. Oğuz E., Aydın A.C. (2003). Prediction of adsorption rate of phosphate removal from wastewater with gaz concrete. International Journal of Environment and Pollution 19 (16), 603–614.
  • 5. Celik, K., Meral, C., Mancio, M., Mehta, P.K., Monteiro, P.J. (2014). A comparative study of self-consolidating concretes incorporating high-volume natural pozzolan or high-volume fly ash. Construction and Building materials, 67(9), 14–19.
  • 6. Ranjbar N., Mehrali M., Behnia A., Alengaram U. J., Jumaat M.Z. (2014). Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar. Materials and Design 59, 532–539.
  • 7. Jozic D., Zelic J. (2006). The effect of fly ash on cement hydratıon in aqueous suspensıons. Faculty of Chemical Technology, Seramics − Silikaty 50 (2), 98–105.
  • 8. Kurt M., Gül M.S., Gül R., Aydın A.C., Kotan T. (2016). The effect of pumice powder self- compactability of pumice aggregate lightweight concrete. Construction and Building Materials 103, 36–46.
  • 9. Muller A. C. A., Scrivener K.L., Skibsted J., Gajewicz A.M., McDonald P.J. (2015). Influence of silica fume on the microstructure of cement pastes: New insights from H NMR relaxometry. Cement and Concrete Research 74, 116–125.
  • 10. Aydın A.C. (2007). Self compactability of high volume hybrid fiber reinforced concrete. Construction and Building Materials 21, 1149–1154.
  • 11. Kurt M, Kotan, T., Gül, M.S., Gül, R., Aydin, A.C. (2016) The Effect of Blast Furnace Slag to Self-Compactability of Pumice Aggregate Lightweight Concrete, SADHANA Academy Proceedings in Engineering Sciences, 41(2), 253–264.
  • 12. Aydın, A.C., Karakoç, M.B., Düzgün, O.A., and Bayraktutan, M.S. (2010). Effect of low quality aggregates on the mechanical properties of lightweight concrete, Scientific Research and Essays, 5 (10), 1133–1140.
  • 13. Çalışkan S. (2003). Aggregate/mortar interface: influence of silica fume at the micro and macro- level. Cement and Concrete Composites 25, 557–564.
  • 14. Erdoğan, T. Y. (2003). Beton. ODTÜ Geliştirme Yayıncılık ve İletişim, 741 p, Ankara.
  • 15. Seslija M., Resic A., Radovic N., Vasic M., Dogo M., Jotic M. (2016). Laboratory Testing of Fly Ash. Tehnicki Vjesnik 23 (6), 1839–1848.
  • 16. Nath, P., Sarker P. (2011). Effect of Fly Ash on the Durability Properties of High Strength Concrete. Procedia Engineering 14, 1149–1156.
  • 17. Arioz E., Arioz Ö., Koçkar Ö.M. (2013). Mechanical and Microstructural Properties of Fly Ash Based Geopolymers. International Journal of Chemical Engineering and Applications, 4 (6), 397–400.
  • 18. Nadaf M.B., Manda J.N. (2013.) Experimental Studies and Analyses for Basic Characterization of Fly Ash. Proceedings of 4th Global Engineering, Science and Technology Conference.
  • 19. Wong Y.L., Lam L., Poon C.S., Zhou F.P. (1999). Properties of fly ash-modified cement mortar- aggregate interfaces. Cement and Concrete Research 29, 1905–1913.
  • 20. Rong Z.D., Sun W., Xiao H.J., Wang W. (2014). Effect of silica fume and fly ash on hydration and microstructure evolution of cement based composites at low water–binder ratios. Construction and Building Materials 51, 446–450.
  • 21. Tangüler M., Gürsel P., Meral Ç. (2015). Türkiye’de Uçucu Küllü Betonlar İçin Yaşam Döngüsü Analizi. ResearchGate.
  • 22. Kruse K., Jasso A., Folliard K., Ferron R., Juenger M., Drimalas T. (2012). Characterizing Fly Ash. The University of Texas, CTR Technical Report , 6648 (1).
  • 23. Kurt M., Aydın A.C., Gül M.S., Gül R., Kotan T. (2015). The effect of fly ash to self- compactability of pumice aggregate lightweight concrete. Indian Academy of Sciences Sadhana 40 (4), 1343–1359.
  • 24. Vidivelli B., Mageswari M. (2010). Study on flyash concrete using SEM analysis. Journal of Environmental Research And Development 5 (1), 46–52.
  • 25. Liu J., Qiu Q., Xing F., Pan D. (2014). Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete. Materials, 7, 4282–4296.
  • 26. Ikram M. (2016). High volume fly ash-strength development in concrete: a review. International Journal of Advanced Structures and Geotechnical Engineering, 5 (2), 52–57.
  • 27. Zheng C., Liua Z., Xub J., Lia X., Yaoa Y. (2007). Compressive strength and microstructure of activated carbon fly-ash cement composites. Chemıcal Engıneerıng Transactıons, 59, 475–480.
  • 28. Stutzman PE. (2001). Scanning electron microscopy in concrete petrography. The American Ceramic and Society 59–72.
  • 29. Temiz H., Karakeçi A.Y. (2002). An investigation on microstructure of cement paste containing fly ash and silica füme. Cement and Concrete Research 32, 1131–1132.
  • 30. Sahoo S. (2016). A Review of Activation Methods in Fly Ash and the Comparison in Context of Concrete Strength. Journal of Basic and Applied Engineering Research, 3 (10), 883–887.
  • 31. Elena J, Lucia MD. (2012). Application of x-ray diffraction (XRD) and scanning electron microscopy (SEM) methods to the portland cement hydration process. Journal of Applied Engineering Sciences 2 (15), 35–42.
  • 32. Dorum A., Koçak Y., Yılmaz B., Uçar A. (2010). Uçucu Kül Katkılı Çimento Hidratasyonuna Elektrokinetik Özelliklerin Etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 25 (3), 449–457.
  • 33. Uzbaş B., Aydın A.C., (2018). XRD Analysis of Mechanical Properties of Containig Fly Ash and Silica Fume Concrete. Sinop University Journal of Naturel Science, 3(2), 1–22.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1be9aa27-188e-4306-8585-9d4b60b4b66e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.