PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Graphene oxide-based nano-materials as catalysts for oxygen reduction reaction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the presented research was to test different carbon supports, such as graphene oxide (GO), graphene oxide modified with ammonia (N-GO), and reduced graphene oxide (rGO) for catalysts used in a low-temperature fuel cell, specifically a proton exchange membrane fuel cell (PEMFC). Modification of the carbon supports should lead to different catalytic activity in the fuel cell. Reduction of GO leads to partial removal of oxygen groups from GO, forming rGO. Modification of GO with ammonia results in an enrichment of GO structure with nitrogen. A thorough analysis of the used supports was carried out, using various analytical techniques, such as FTIR spectroscopy and thermogravimetric (TGA) analysis. Palladium and platinum catalysts deposited on these supports were produced and used for the oxygen reduction reaction (ORR). Catalytic activity tests of the prepared catalysts were carried out in a home-made direct formic acid fuel cell (DFAFC). The tests showed that the enrichment of the GO structure with nitrogen caused an increase in the catalytic activity, especially for the palladium catalyst. However, reduction of GO resulted in catalysts with higher activity and the highest catalytic activity was demonstrated by Pt/rGO, because platinum is the most catalytically active metal for ORR. The obtained results may be significant for low-temperature fuel cell technology, because they show that a simple modification of a carbon support may lead to a significant increase of the catalyst activity. This could be useful especially in lowering the cost of fuel cells, which is an important factor, because thousands of fuel cells running on hydrogen are already in use in commercial vehicles, forklifts, and backup power units worldwide. Another method used for lowering the price of current fuel cells can involve developing new clean and cheap production methods of the fuel, i.e. hydrogen. One of them employs catalytic processes, where carbon materials can be also used as a support and it is necessary to know how they can influence catalytic activity.
Rocznik
Strony
361–--376
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Akorede M.F., Hizam H., Pouresmaeil E., 2010. Distributed energy resources and benefits to the environment. Renewable and Sustainable Energy Rev., 14, 724–734. DOI: 10.1016/j.rser.2009.10.025.
  • 2. Antolini E., 2009a. Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B Environ., 88, 1–24. DOI:
  • 3. 10.1016/j.apcatb.2008.09.030.
  • 4. Antolini E., 2009b. Palladium in fuel cell catalysis. Energy Environ. Sci., 2, 915–931. DOI: 10.1039/B820837A.
  • 5. Bae D., Seger B., Vesborg P.C.K., Hansen O., Chorkendorff I., 2017. Strategies for stable water splitting: Via protected photoelectrodes. Chem. Soc. Rev., 46, 1933–1954, DOI: 10.1039/C6CS00918B.
  • 6. Bergstrom J. C., Randall A., 2011. Resource economics: An economic approach to natural resource and environmental policy. 4th ed., Edward Elgar Pub, Cheltenham.
  • 7. Bilgen S., Sarikaya I., 2018. Energy conservation policy and environment for a clean and sustainable energy future. Energy Sources Part B, 13, 183–189. DOI: 10.1080/15567249.2017.1423412.
  • 8. Cano Z.P., Banham D., Ye S., Hintennach A., Lu J., Fowler M., Chen Z., 2018. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy, 3, 279–289. DOI: 10.1038/s41560-018-0108-1.
  • 9. Carrette L., Friedrich, K.A., Stimming U., 2000. Fuel cells: Principles, types, fuels, and applications. Chem. Phys. Chem., 1, 162–193. DOI: 10.1002/1439-7641(20001215)1:4<162::AID-CPHC162>3.0.CO;2-Z.
  • 10. Compton O.C., Nguyen S.T., 2010. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building for carbon-based materials. Small, 6, 711–723. DOI: 10.1002/smll.200901934.
  • 11. Dresselhaus M.S., Thomas I.L., 2001. Alternative energy technologies. Nature, 414, 332–337. DOI: 10.1038/ 35104599.
  • 12. EG&GTechnicalServices,Inc.,2004.FuelCellHandbook.DepartmentofEnergy.OfficeofFossilEnergy,National Energy Technology Laboratory, Morgantown.
  • 13. Gamburzev S., Appleby A.J., 2002. Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC). J. Power Sources, 107, 5–12. DOI: 10.1016/S0378-7753(01)00970-3.
  • 14. Gao L., Yue W., Tao S., Fan L., 2013. Novel strategy for preparation of graphene-Pd, Pt composite, and its enhanced electrocatalytic activity for alcohol oxidation. Langmuir, 29, 957–964. DOI: 10.1021/la303663x.
  • 15. Gomez-Navarro C., Weitz R.T., Bittner A.M., Scolari M., Mews A., Burghard M., Kern K., 2007. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett., 7, 3499–3503. DOI: 10.1021/nl072090c.
  • 16. He Z., Que W., 2016. Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction. Appl. Mater. Today, 3, 23–56. DOI: 10.1016/j.apmt.2016.02.001.
  • 17. Hisatomi T., Kubota J., Domen K., 2014. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev., 43, 7520–7535. DOI: 10.1039/C3CS60378D.
  • 18. Jaworski S., Wierzbicki M., Sawosz E., Jung A., Gielerak G., Biernat J., Jaremek H., Łojkowski W., Woźniak B., Wojnarowicz J., Stobinski L., Malolepszy A., Mazurkiewicz M., Łojkowski M., Kurantowicz N., Chwalibog A., 2018. Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent. Nanoscale Res. Lett., 13, 116. DOI: 10.1186/s11671-018-2533-2.
  • 19. Jiang K., Zhang H.-X., Zou S., Cai W.-B., 2014. Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Phys. Chem. Chem. Phys., 16, 20360–20376. DOI: 10.1039/C4CP03151B.
  • 20. Jung I., Dikin D.A., Piner R.D., Ruoff R.S., 2008. Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Lett., 3, 4283–4287. DOI: 10.1021/nl8019938.
  • 21. Latorrata S., Pelosato R., Stampino P.G., Cristiani C., Dotelli G., 2018. Use of electrochemical impedance spectroscopy for the evaluation of performance of PEM fuel cells based on carbon cloth gas diffusion electrodes. J. Spectro., 1–13. DOI: 10.1155/2018/3254375.
  • 22. Lei G., Changcun H., Xinlai X., Lele G., 2013. Synthesis and characterization of composite visible light active photocatalysts MoS2 g-C3N4 with enhanced hydrogen evolution activity. Int. J. Hydrog. Energy, 38, 6960–6969. DOI: 10.1016/j.ijhydene.2013.04.006.
  • 23. Lesiak B., Mazurkiewicz M., Malolepszy A., Stobinski L., Mierzwa B., Mikolajczuk-Zychora A.B., Juchniewicz K., Borodzinski A., Zemek J., Jiricek P., 2016. Effect of the Pd/MWCNTs anode catalysts preparation methods on their morphology and activity in a direct formic acid fuel cell. Appl. Surf. Sci., 387, 929–937. DOI: 10.1016/j.apsusc.2016.06.152.
  • 24. Li Y., Wang H., Xie L., Liang Y., Hong G., Dai H., 2011. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. Am. Chem. Soc., 133, 7296–7299. DOI: 10.1021/ja201269b.
  • 25. MakowskiŁ.,OrciuchW.,BałdygaJ.R.,2012.Largeeddysimulationsofmixingeffectsonthecourseofprecipitation process. Chem. Eng. Sci., 77, 85–94. DOI: 10.1016/j.ces.2011.12.020.
  • 26. Mayrhofer K.J.J., Strmcnik D., Blizanac B.B., Stamenkovic V., Arenz M., Markovic N.M., 2008. Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta, 53, 3181–3188. DOI: 10.1016/j.electacta.2007.11.057.
  • 27. Mazurkiewicz-Pawlicka M., Malolepszy A., Mikolajczuk-Zychora A., Mierzwa B., Borodzinski A., Stobinski L., 2019. A simple method for enhancing the catalytic activity of Pd deposited on carbon nanotubes used in direct formic acid fuel cells. Appl. Surf. Sci., 476, 806–814. DOI: 10.1016/j.apsusc.2019.01.114.
  • 28. Mikolajczuk-Zychora A.B., Kedzierzawski P., Mierzwa B., Mazurkiewicz-Pawlicka M., Stobinski L., Ciecierska E., Zimoch E., Opałło M., 2016. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells. Appl. Surf. Sci., 199, 645–652. DOI: 10.1016/j.apsusc.2016.02.065.
  • 29. Puthusseri G.D., Ramaprabhu S., 2016. Oxygen reduction reaction activity of platinum nanoparticles decorated nitrogen doped carbon in proton exchange membrane fuel cell under real operating conditions. Int. J Hydrog. Energy, 41, 13163–13170. DOI: 10.1016/j.ijhydene.2016.05.146.
  • 30. Ratso S., Kruusenberg I., Joost U., Saar R., Tammeveski K., 2016. Enhanced oxygen reduction reaction activity of nitrogen-doped graphene/multi-walled carbon nanotube catalysts in alkaline media. Int. J Hydrog. Energy, 41, 22510–22519. DOI: 10.1016/j.ijhydene.2016.02.021.
  • 31. Rejal S.Z., Masdar M.S., Kamarudin S.K., 2014. A parametric study of the direct formic acid fuel cell (DFAFC) performance and fuel crossover. Int. J. Hydrog. Energy, 39, 10267–10274. DOI: 10.1016/j.ijhydene.2014.04.149.
  • 32. Rice C., Ha S., Masel R.I., Waszczuk P., Wieckowski A., Barnard T., 2002. Direct formic acid fuel cells. J. Power Sour., 111, 1, 83–89. DOI: 10.1016/S0378-7753(02)00271-9.
  • 33. Rice C., Ha S., Masel R.I., Wieckowski A., 2003. Catalysts for direct formic acid fuel cells. J. Power Sour., 115, 2, 229–235. DOI: 10.1016/S0378-7753(03)00026-0.
  • 34. RogerI.,ShipmanM.A.,SymesM.D.,2017.Earth-abundantcatalystsforelectrochemicalandphotoelectrochemical water splitting. Nat. Rev. Chem., 1, 0003. DOI: 10.1038/s41570-016-0003.
  • 35. Santillo G., Deorsola F., Bensaid S., Russo N., Fino D., 2012. MoS2 nanoparticle precipitation in turbulent micromixers. Chem. Eng. J., 207–208, 322–328. DOI: 10.1016/j.cej.2012.06.127.
  • 36. Seger B., Kamat P.V., 2009. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C, 133, 7990–7995. DOI: 10.1021/jp900360k.
  • 37. Shao M., Peles A., Shoemaker K., 2011. Electrocatalysis on platinum nanoparticles: Particle size effect on oxygen reduction reaction activity. Nano Lett., 11, 3714–3719. DOI: 10.1021/nl2017459.
  • 38. Sharma S., Pollet B.G., 2012. Support materials for PEMFC and DMFC electrocatalysts – A review. J. Power Sour., 208, 96–119. DOI: 10.1016/j.jpowsour.2012.02.011.
  • 39. She Y., Lu Z., Fan W., Jewell S., Leung M.K.H., 2014. Facile preparation of PdNi/rGO and its electrocatalytic performance towards formic acid oxidation. J. Mater. Chem. A, 2, 3894–3898. DOI: 10.1039/C3TA14546H.
  • 40. Shin H.-J., Kim K.K., Benayad A., Yoon S.-M., Park H.K., Jung I.-S., Jin M.H., Jeong H.-K., Kim J.M., Choi J.-Y., Lee Y.H., 2009. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater., 19, 1987–1992. DOI: 10.1002/adfm.200900167.
  • 41. Stobinski L., Lesiak B., Malolepszy A., Mazurkiewicz M., Mierzwa B., Zemek J., Jiricek P., Bieloshapka I., 2014. Gaphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron. Spectrosc. Relat. Phenom., 195, 145–154. DOI: 10.1016/j.elspec.2014.07.003.
  • 42. Su Y., Zhang Y., Zhuang X., Li S., Wu D., Zhang F., Feng X., 2013. Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon, 62, 296–301. DOI: 10.1016/j.carbon.2013.05.067.
  • 43. Tobes M.L., van Dillen J.A., de Jong K.P., 2001. Synthesis of supported palladium catalysts. J. Mol. Catal. A: Chem., 173, 75–98. DOI: 10.1016/S1381-1169(01)00146-7.
  • 44. WangX.,HuJ.M.,HsingI.M.,2004.Electrochemicalinvestigationofformicacidelectro-oxidationanditscrossover through a Nafion® membrane. J. Electroanal. Chem., 562, 73–80. DOI: 10.1016/j.jelechem.2003.08.010.
  • 45. Winter M., Brodd R.J., 2004. What are batteries, fuel cells, and supercapacitors? Chem. Rev., 104, 4245–4270. DOI: 10.1021/cr020730k.
  • 46. Wojtas K., Orciuch W., Makowski Ł., 2017. Modeling and experimental validation of subgrid scale scalar variance at high Schmidt numbers. Chem. Eng. Res. Des., 123, 141–151. DOI:10.1016/j.cherd.2017.05.003.
  • 47. Xu X., Yuan T., Zhou Y., Li Y., Lu J., Tian X., Wang D., Wang J., 2014. Facile synthesis of boron and nitrogen-doped graphene as efficient electrocatalyst for the oxygen reduction reaction in alkaline media. Int. J. Hydrogen Energy, 39, 16043–16052. DOI: 10.1016/j.ijhydene.2013.12.079.
  • 48. Yang J., Tian C., Wanga L., Fu H., 2011. An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation. J. Mater. Chem., 21, 3384–3390. DOI: 10.1039/C0JM03361H.
  • 49. Yu X., Pickup P.G., 2008. Recent advances in direct formic acid fuel cells (DFAFC). J. Power Sources, 182, 124–132. DOI: 10.1016/j.jpowsour.2008.03.075.
  • 50. Yuan Y.J., Lu H.W., Yu Z.T., Zou Z.G., 2015. Noble-metal-free molybdenum disulfide cocatalyst for photocatalytic hydrogen production. Chem. Sus. Chem., 8, 4113–4127. DOI: 10.1002/cssc.201501203.
  • 51. Zaaba N.I., Foo K.L., Hashim U., Tan S.J., Liu W.-W., Voon C., 2017. Synthesis of graphene oxide using modified hummers method: Solvent influence. Procedia Eng., 184, 469–477. DOI: 10.1016/j.proeng.2017.04.118.
  • 52. Zhu Y., Ha S.Y., Masel R.I., 2004. High power density direct formic acid fuel cells. J. Power Sources, 130, 8–14. DOI: 10.1016/j.jpowsour.2003.11.051.
  • 53. Zhuo Q., Gao J., Peng M., Bai L., Deng J., Xia Y., Ma Y., Zhong J., Sun X., 2013. Large-scale synthesis of graphene by the reduction of graphene oxide at room temperature using metal nanoparticles as catalyst. Carbon, 52, 559–564. DOI: 10.1016/j.carbon.2012.10.014.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bdf2b9f-3301-4d40-a9e7-ba4ceb1b756c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.