PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the Curing Process on the Fatigue Strength and Residual Strength of a Fiber Composite Estimation Using the Theory of Markov Chains

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the influence of quality failure of matrix post-curing on the strength of such complex and difficult "new generation" materials as fiber composites, especially those with polymer matrix. The performed statistical analysis of the components determined the complexity of the layered composite structure. And the developed model of the weakest micro-volume presented in this paper has helped to describe not only the pre-dictable strength of the laminate, but also the nature of failure, taking into account the fiber stresses and/or the distribution of end strains in the structure of the composite under consideration. The strength of fibre composi-te structures based on Markov chain theory takes into account technological aspects during the curing process. The presented model was verified on the basis of literature examples and experimental data obtained during the testing process. Numerical results show good agreement with literature examples and measured data. The pre-sented model may represent a novel method that provides further insight into the curing process of epoxy re-sins.
Twórcy
  • Faculty of Mechatronics and Machine Design, Kielce University of Technology, al. 1000-lecia P.P.7, 25-314, Kielce, Poland
  • Faculty of Mechanical Engineering, Department of Production Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Markuszewski, D., Bielak, M., Wądołowski, M., Grzybek, A. Polymer-Carbon Composite Supporting Structure. Advances in Science and Technology Research Journal 2022; 16(6): 244–250. https://doi.org/10.12913/22998624/156300.
  • 2. Markuszewski, D., Wądołowski, M., Gorzym, M., Bielak, M. Concept of a Composite Frame of Martian Vehicle. Advances in Science and Technology Research Journal 2021; 15(4): 222–230. https://doi.org/10.12913/22998624/141213.
  • 3. Lakho, D.A., Yao, D., Cho, K., Ishaq, M., Wang, Y. Study of the Curing Kinetics toward Development of Fast-Curing Epoxy Resins. Polym.-Plast. Technol. Eng. 2017; 56: 161–170.
  • 4. Bereska, B., Iłowska, J., Czaja, K., Bereska, A. Hardeners for epoxy resins. Chemical industry 2014; (4)93: 443–448.
  • 5. Zhang, J., Xu, Y.C., Huang, P. Effect of cure cycle on curing process and hardness for epoxy resin. Polymer 2009; 3(9): 534–541.
  • 6. Kłonica, M., Kuczmaszewski, J., Samborski, S. Effect of a notch on impact resistance of the epidian 57/Z1 epoxy material after “Thermal Shock”. Solid State Phenomena 2016; 240: 161–167. https://doi.org/10.4028/www.scientific.net/SSP.240.161.
  • 7. Ren, R., Chen, P., Lu, S., Xiong, X., Liu, S. The curing kinetics and thermal properties of epoxy resins cured by aromatic diamine with hetero-cyclic side chain structure. Thermochim. Acta 2014; 595: 22–27.
  • 8. Jianfeng, D., Shangbin, X., Dongna, L. Numerical Analysis of Curing Residual Stress and Deformation in Thermosetting Composite Laminates with Comparison between Different Constitutive Models. Materials 2019; 12(4): 572. https://doi.org/10.3390/ma12040572.
  • 9. O’Brien, D.J., Mather, P.T., White, S.R. Viscoelastic properties of an epoxy resin during cure. J. Compos. Mater. 2001; 35: 883–904.
  • 10. Kłonica, M., Kuczmaszewski, J. Modification of Ti6Al4V titanium alloy surface layer in the ozone atmosphere. Materials 2019; 12(13). https://doi.org/10.3390/ma12132113.
  • 11. Gnatowski, A. Influence of the type of filler on the properties of selected polymer mixtures. Quarterty “Composites theory and practice” 2005; 2: 63–68.
  • 12. Wang, X.X.; Zhao, Y.R.; Su, H.; Jia, Y.X. Curing process-induced internal stress and deformation of fiber reinforced resin matrix composites: Numerical comparison between elastic and viscoelastic models. Polym. Polym. Compos. 2016; 24: 155–160.
  • 13. White, S.R., Hahn, H.T. Process modeling of composites materials: Residual stress development during cure. Part I. Model formulation. Journal of Composite Materials 1992; 26(16): 2402–2422.
  • 14. White, S.R., Hahn, H.T. Process modeling of composites materials: Residual stress development during cure. Part II. Experimental validation. Journal of Composite Materials 1992; 26(16): 2423–2453.
  • 15. Ciriscioli, P.R., Wang, Q., Springer, G.S. Autoclave curing – Comparisons of model and test results, Journal of Composite Materials 1992; 26(16): 90–102.
  • 16. Chatys R. Modeling of Mechanical Properties with the Increasing Demands in The Range of Qualities and Repeatability of Polymers Composites Elements, Monograhy na Polymers and Constructional Composites, Gliwice 2008; 36–47.
  • 17. Maria, B., Lionel, M., Alice, C., Martin, L., Edu, R. Numerical analysis of viscoelastic process-induced residual distortions during manufacturing and post-curing. Compos. Part A Appl. Sci. Manuf. 2018; 107: 205–216.
  • 18. Maria, B., Lionel, M., Alice, C., Martin, L., Edu, R. Numerical analysis of viscoelastic process-induced residual distortions during manufacturing and post-curing. Compos. Part A Appl. Sci. Manuf. 2018; 107: 205–216.
  • 19. Tavakol, B., Roozbehjavan, P., Ahmed, A., Das, R., Joven, R., Koushyar, H. Prediction of Residual Stresses and Distortion in Carbon Fiber-Epoxy Composite Parts Due to Curing Process Using Finite Element. J. Appl. Polym. Sci. 2013; 128: 941–950.
  • 20. Fragassa, C., de Camargo, F.V., Pavlovic, A., Minak, G. Explicit numerical modeling assessment of basalt reinforced composites for low-velocity impact. Compos. Part B Eng. 2019; 163: 522–535.
  • 21. Kozioł M. Pressure-vacuum saturation of stitched and three-dimensionally woven glass fiber preforms. 2016, Wyd. PŚ. Gliwice 2016.
  • 22. Ma, Y.R., He, J.L., Li, D., Tan, Y., Xu, L. Numerical simulation of curing deformation of resin matrix composite curved structure. Acta Mater. Compos. Sin. 2015; 32: 874–880.
  • 23. Deléglise, M., Binétruy, C., Castaing, P., Krawczak, P. Use of non local equilibrium theory to predict transient temperature during non-isothermal resin flow in a fibrous porous medium. Int. J. Heat Mass Transf. 2007; 50: 2317–2324. DOI:10.1016/j.ijheatmasstransfer.2006.10.020.
  • 24. Hsiao, K., Laudorn, H., Advani, S.G. Experimental investigation of heat dispersion due to impregnation of viscous fluids in heated fibrous porous during composites processing. ASME J. of Heat Transfer 2001; 123: 178–187.
  • 25. Chiu, H., Yu, B., Chen, S.C., Lee, L.J. Heat transfer during flow and resin reaction through fiber reinforcement. Chemical Engineering Science 2000; 55: 3365–3376.
  • 26. Hsiao, K.T., Advani, S.G. Modified effective thermal conductivity due to heat dispersion in fibrous porous media, Int. J. Heat Mass Transfer 1999; 42: 1237–1254.
  • 27. Henne, M., Ermanni, P., Deleglise, M., Krawczak, P. Heat transfer of fiber beds in resin transfer molding: an experimental approach. Composites Science and Technology Pergamon, Elsevier Sci. Ltd., UK 2014; 64.
  • 28. Ganapathi, A.S., Joshi, S.C., Chen, Z. Simulation of Bleeder flow and curing of thick composites with pressure and temperature dependent properties. Simul. Model. Pract. Theory 2013; 32: 64–82.
  • 29. Choi, M.A., Lee, M.H., Chang, J., Lee, S.J. Permeability modeling of fibrous media in composite processing. Journal of Non-Newtonian Fluid Mechanics 1998; 79: 585–598.
  • 30. Starov, V.M., Zhdanov, V.G. Effective viscosity and permeability of porous media. Colloids and Surfaces 2001; 192: 363–375.
  • 31. Kim, S.K., Opperer, J.G., Daniel, I.M. Determination of permeability of fibrous medium considering inertial effects. Int. Comm. Heat Mass Transfer 2002; 29: 879–885.
  • 32. Jansen, K.M.B., De Vreugd, J., Ernst, L.J. Analytical estimate for curing-induced stress and warpage in coating layers. J. Appl. Polym. Sci. 2012; 126: 1623–1630.
  • 33. Polyakov W.А., Pierov J.J. Экспериментальные методы оценки кромочного эффекта, Mech. Compos. Mater. 1989; 2: 318–331.
  • 34. Paramonov, Y.M., Kleinhof, M.A., Paramonova, A.Y. Markov Model of Connection Between the istribution of Static Strength and Fatigue Life of a Fibrous Composite, Mech. Compos. Mater. 2006; 42(5): 615–630.
  • 35. Pascual, F.G., Meeker W.Q. Technometrics 1999; 41: 277–302.
  • 36. Chatys, R., Paramonova, A.Y., Kleinhof, M.A. Analysis of Residual Strength afterFatigue in Fibrous Composite using Markov Chains Mode. Monography: Selected Problems of Modeling and Control in Mechanics. Edited by St. Adamczak and L. Radziszewski, Kielce 2011; 166–178.
  • 37. Paramonov, J., Chatys, R, Andersons, J., Kleinhofs, M. Poisson process of defect initiation in fatigue of a composite material, 2011, International Conferences „RelStat’2011”,Riga, Latvia 2011; 1–12.
  • 38. Chatys, R. Statistical verification of strength parameters of fibrous composite materials. Quarterty “Composites theory and practice” 2012; 12(3): 171–176.
  • 39. Fleming, W.H., Soner, H.M. Controlled Markov processes and viscosity solutions. New York. Springer Verlag 1993
  • 40. Chatys, R. Investigation of the Effect of Distribution of the Static Strength on the Fatigue Failure of a Layered Composite by Using the Markov Chains Theory. Mechanics of Composite Materials 2012; 48(6): 911–922.
  • 41. Dekker, R., Nicolai, R.P., Kallenberg, L.C.M. Maintenance and Markov decision models. In Wiley StatsRef: Statistics Reference Online (eds. Bal akrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels J.L.). John Wiley & Sons 2014. DOI: 10.1002/9781118445112.stat03960.
  • 42. Found, M.S., Quaresimin, M. Two–stage fatigue loading of woven carbon fiber reinforced laminates, Fatigue Fract. Eng. Mater. Struct. 2003; 26: 17–26.
  • 43. Paramonov, J., Chatys, R., Anderson, J. Kleinhofs M. Markov Model of Fatigue of a Composite Material with Poisson Process of Defect Initiation, Mechan ics of Composite Materials 2012; 48(2): 211–228.
  • 44. Wu, X., Zou, X., Guo, X. First passage Markov decision processes with constraints and varying discount factors. Frontiers of Mathematics in China 2015; 10(4): 1005–1023. https://doi.org/10.1007/s11464–015–0479–6.
  • 45. Chatys, R. Application of the Markov Chain Theory in Estimating the Strength of Fiber-Layered Composite Structures With Regard to Manufacturing Aspects. Advances in Science and Technology Research Journal 2020; 4(4): 64–71.
  • 46. Macek, W. Fractal analysis of the bending-torsion fatigue fracture of aluminium alloy. Engineering Failur Analysis 2019; 99: 97–107. DOI: 10.1016/j.engfailanal.2019.02.007.
  • 47. Macek, W., Martins, R.F., Branco, R., Marciniak, Z., Szala, M., Wroński, S. Fatigue fracture morphology of AISI H13 steel obtained by additive manufacturing. International Journal of Fracture 2022; 235: 79–98. DOI: 10.1007/s10704–022–00615–5.
  • 48. Vautard, F., Ozcan, S., Poland, L. Influence of thermal history on the mechanical properties of carbon fiber-acrylate composites cured by electron beam and thermal processes. Compos. Part A Appl. Sci. Manuf. 2013; 45: 162–172.
  • 49. Szumniak, J., Smoczyński, Z., Szcześniak, K. Aging of polymer composites of armaments and military equipment. WSOWL 2011; 159(1): 271–285.
  • 50. Chatys, R., Orman, Ł.J. Technology and properties of layered composites as coatings for heat transfer enhancement. Mechanics of Composite Materials 2017; 53(3): 351–360.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bdbd221-00e8-4219-aa37-4d4da845dd82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.