PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative friction and wear tests of fire hoses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the main operational tasks of fire investigation units is to extinguish fires, which is most often achieved by applying various types of extinguishing agents to the burning material. For firefighting to be effective, it is essential to use appropriate equipment, including fire hoses through which water or water-based solutions are transported. Fire hoses must be resistant to mechanical, thermal, and chemical exposures. In particular, they must withstand abrasion, which can compromise tightness and result in leakage or uncontrolled water jets. Hose webbing typically has a multilayer structure. The outer (surface) layer is exposed to abrasion from sliding friction in contact with rough surfaces, sometimes containing abrasive particles. Abrasion against sharp edges occurs less frequently due to safety features such as fire hose saddles. Pilot laboratory tests were carried out on the hose webbing of four fire hose models to determine the coefficient of friction and linear wear. Additionally, observations were made on the wear mechanisms affecting the hose webbing surfaces.
Rocznik
Strony
179--189
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • Fire University in Warsaw, Faculty of Safety Engineering 52/54 J. Słowackiego St., 01-629 Warszawa, Poland
  • Tribology Centre Łukasiewicz Research Network – Institute for Sustainable Technologies in Radom 6/10 Kazimierza Pułaskiego St., 26-600 Radom, Poland
  • Fire University in Warsaw, Faculty of Safety Engineering 52/54 J. Słowackiego St., 01-629 Warszawa, Poland
  • Fire University in Warsaw, Faculty of Safety Engineering 52/54 J. Słowackiego St., 01-629 Warszawa, Poland
autor
  • WSEI University in Lublin, Faculty of Transportation and Information Technology 4 Projektowa St., 20-209 Lublin, Poland
  • Poznań University of Technology, Faculty of Civil and Transport Engineering 3 Piotrowo St., 61-139 Poznań, Poland
  • Vilnius Gediminas Technical University, Institute of Mechanical Science, (Vilnius Tech)
Bibliografia
  • 1. Abu Obaid, A. & Gillespie, J.W. (2019) Effects of abrasion on mechanical properties of Kevlar KM2-600 and S glass tows. Textile Research Journal 89 (6), pp. 989–1002, doi: 10.1177/0040517518760753.
  • 2. All Hose & Valves (2023) Understanding, Preventing, and Troubleshooting Hose Failures. [Online] 12 July. Available from: https://www.allhose.com.au/preventing-hose-failures/ [Accessed: April 15, 2025].
  • 3. ASTM D3884-09 (2017) Standard guide for abrasion resistance of textile fabrics (rotary platform, double-head method).
  • 4. Chudy, P. & Wąsik, W. (2019) Laboratory. Rescue and firefighting equipment. Part I. Warsaw: Fire University (in Polish).
  • 5. Cortes, D., et al. (2010) Tribotesting. Reproducibility and repeatability problems. Radom–Monterrey: ITeE, Universidad de Monterrey & PH of IST-NRI in Radom.
  • 6. Derecki, T. (1999) Sprzęt pożarniczy do podawania wody i pian gaśniczych (Firefighting equipment for delivering water and foam extinguishing agents). Warsaw: Fire University, p. 113.
  • 7. Drzymała, T., Wąsik, W. & Chudy, P. (2015) Features and analysis of the selected parameters of the hoses W-42 used in fire protection area. Logistyka 5, pp. 789–802 (CD1) (in Polish).
  • 8. Dwórska, M., Jurecki, L., Jakubowski, M., Żurawski, M. & Pastuszka, Ł. (2023) Influence of external factors on the strength of firefighting hoses used in fire protection units. Safety & Fire Technology 62 (2), pp. 150–170, doi: 10.12845/sft.62.2.2023.9.
  • 9. Hebda, M. (2007) Procesy tarcia, smarowania i zużywania maszyn. Warsaw–Radom: ITeE (in Polish).
  • 10. Hosseinali, F. & Thomasson, J.A. (2018) Variability of fiber friction among cotton varieties: influence of salient fiber physical metrics. Tribology International 127, pp. 433–445, ddoi: 10.1016/j.triboint.2018.06.029.
  • 11. ISO 12947-2:2016. Textiles – Determination of the abrasion resistance of fabrics by the Martindale method.
  • 12. ISO 25178-2:2021. Geometrical product specifications (GPS) – Surface texture: Areal. Part 2: Terms, definitions and surface texture parameters.
  • 13. Lawrowski, Z. (2009) Tibologia. Tarcie, zużywanie i smarowanie. Wrocław: Politechnika Wrocławska (in Polish).
  • 14. Lemańska, K. & Główka, S. (2013) Review, application and development trends of firefighting equipment. BiTP. Bezpieczeństwo i Technika Pożarnicza 30 (2), pp. 91–99 (in Polish).
  • 15. Milionis, A., Loth, E. & Bayer, I.S. (2016) Recent advances in the mechanical durability of superhydrophobic materials. Advances in Colloid and Interface Science 229, pp. 57–79 10.1016/j.cis.2015.12.007.
  • 16. Minister for Internal Affairs and Administration (2007) Regulation of the Minister for Internal Affairs and Administration of 20 June 2007 on a listing of products used to assure public safety or protection of health and life and property, as well as rules for issuance of a certificate of admittance of those products for use.
  • 17. Minister for Internal Affairs and Administration (2010) Decree of the Minister for Internal Affairs and Administration of 27 April 2010.
  • 18. Murphy, J.J., Gates, P.Ch., Scangas, Ch.A. & Donovan, J.T. (2017) An analysis of modern day fire attack hose. Worcester Polytechnic Institute (WPI).
  • 19. Naturalnie.eco (n.d.) Sploty tkanin a ich właściwości. [Online]. Available from: https://naturalnie.eco/splotytkanin-a-ich-wlasciwosci/ [Accessed: April 15, 2025].
  • 20. Niewczas, A., Czerniec, M. & Ignaciuk, P. (2000) Badania trwałości elementów maszyn współpracująco tarciowo. Lublin: IZT (in Polish).
  • 21. PN-89/M-04256/04 (1989) Struktura geometryczna powierzchni – Falistość powierzchni – Terminologia (Surface geometric structure – Surface waviness – Terminology).
  • 22. PN-91/M-51031 (1991) Firefighting equipment. Couplings.
  • 23. ROL-POŻ (n.d.) Fire delivery hose W52-20 coated ŁA/ PUPW BEZALIN. [Online]. Available from: https://www. rol-poz.com.pl/waz-strazacki-tloczny-powlekany-w52-20- lapupw-bezalin-p-4953.html [Accessed: April 15, 2025].
  • 24. Sinoimeri, A. (2009) Friction in textile fibres and its role in fibre processing. Wear 267 (9–10), pp. 1619–1624, doi: 10.1016/j.wear.2009.06.010.
  • 25. Solski, P. & Ziemba, S. (1969) Zagadnienia zużycia elementów maszyn spowodowanego tarciem. Warsaw: PWN (in Polish).
  • 26. TESTEX (2023) Evaluating the abrasion resistance of different fabric types. [Online] 20 October. Available from: https://www.testextextile.com/evaluating-the-abrasion-resistance-of-different-fabric-types/ [Accessed: April 15, 2025].
  • 27. Wang, Y., Shi, X., Yuan, Y., Gao, J. & Zhang, Y. (2024) Study on the frictional contact behaviour of plain cotton fabric with metal. Tribology International 199, 110057, doi: 10.1016/j.triboint.2024.110057.
  • 28. Woropay, M. (1996) Podstawy racjonalnej eksploatacji maszyn. Bydgoszcz–Radom: ITeE (in Polish).
  • 29. Young, Ch.F. (1866) Fires, Fire Engines, and Fire Brigades: With a History of Manual and Steam Fire Engines, Their Construction, Use and Management: with Numerous Illustrations. London: Lockwood & Company.
  • 30. Zhao, H., Tian, M., Li, Z., Zhang, Y., Chen, Z., Zhang, W., Zhu, S., Sun, Y., Zhou, Z. & Qu, L. (2019) Robust sandwich micro-structure coating layer for wear-resistant conductive polyester fabrics. Applied Surface Science 494, pp. 969–976, doi: 10.1016/j.apsusc.2019.07.103.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bda1f24-8ea4-4130-9602-4e8bc726ae72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.