PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of crumb rubber on the fresh and hardened properties of dune sand concrete

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the effects of using crumb rubber as a partial replacement for dune sand in concrete mixtures. The incorporation of crumb rubber presents promising ecological and economic benefits, particularly for waste management and material sustainability. In this research, up to 5% of the dune sand was replaced with crumb rubber, and the resulting concrete's fresh and hardened properties were thoroughly examined to evaluate the impact of this substitution on its mechanical characteristics. The findings reveal that concrete mixtures containing crumb rubber exhibit significantly reduced compressive strength, with a comparatively smaller decrease in tensile strength, relative to conventional dune sand concrete. Specifically, at a 5% replacement rate, substantial reductions in compressive and tensile strength were observed at 28 days, amounting to 66.15% and 48.72%, respectively. These performance limitations suggest that crumb rubber-modified concrete may not be appropriate for structural applications. Nevertheless, potential alternative uses, such as in highway median barriers, curbs, or decorative elements, could represent viable applications for these modified concrete mixtures.
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Science and Technology, Acoustics and Civil Engineering Laboratory, University of Khemis-Miliana, Algeria
  • Faculty of Science and Technology, Acoustics and Civil Engineering Laboratory, University of Khemis-Miliana, Algeria
  • Civil Engineering Department, Faculty of Science and Technology, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj, Algeria
  • Department of Earth Sciences, Laboratory of Agricultural Production and Sustainable Development of Natural Resources (PRAVDURN), Khemis Miliana University, Algeria
Bibliografia
  • 1. Mohammed S.I, Najim K.B. Mechanical strength, flexural behavior and fracture energy of recycled concrete aggregate self-compacting concrete. Structures, 2020; 23: 34-43. https://doi.org/10.1016/j.istruc.2019.09.010.
  • 2. Merabti S, Kenai S, Belarbi R, Khatib J. Thermo-mechanical and physical properties of waste granular cork composite with slag cement. Construction and Building Materials, 2021; 272: 121923. https://doi.org/10.1016/j.conbuildmat.2020.121923.
  • 3. Serikma M, Benahmed B, Kennouche S, Mohd Hashim MH, Merabti S. Valorization of glass powder as filler in self-compacting concrete. Scientific Review Engineering and Environmental Sciences, 2024; 33 (3): 261–277. http://dx.doi.org/10.22630/srees.9810.
  • 4. Mezidi A, Merabti S, Benyamina S, Sadouki M. Effect of substituting white cement with ceramic waste powders (CWP) on the performance of a mortar based on crushed sand. Advances in Materials Science, 2023; 23 (4): 78. http://dx.doi.org/10.2478/adms-2023-0026.
  • 5. Merabti S. Effect of concrete class, maximum aggregate size and specimen size on the compressive strength of cores and cast specimens. Advances in Materials Science 22 (4), 21-31.2022. http://dx.doi.org/10.2478/adms-2022-0016.
  • 6. Merabti S, Guelmine L. Influence of Concrete Compressive Strength on L-Shaped Shear Wall Performance in Buildings within High-Seismicity Zones. The Journal of Engineering and Exact Sciences, 2024; 10 (4): 18712-18712. http://dx.doi.org/10.18540/jcecvl10iss4pp18712.
  • 7. Tian C, Zhao L, He X, Su Y, Wang Y, Yang J, Li Y, Dong Z, Chen N, Li S. Enhancing mechanism of mechanical properties of lightweight and high-strength concrete prepared with autoclaved silicate lightweight aggregate. Journal of Building Engineering, 2024; 98: 111102. https://doi.org/10.1016/j.jobe.2024.111102.
  • 8. Merabti S, Bezari S, Boudina A. Prediction of the compressive strength in high-strength concrete cores through the destructive method. Sigma Journal of Engineering and Natural Sciences, 2025; 43 (2): 541-554. https://doi.org/10.14744/sigma.2025.00042.
  • 9. ASTM C330-00: Specification for lightweight aggregates for structural concrete, 2000.
  • 10. ACI 213R-14. Guide for Structural Lightweight-Aggregate Concrete. 2014.
  • 11. Marvila M.T, Azevedo A.R, Delaqua G.C, Mendes B.C, Pedroti L.G, Vieira C.M. Performance of geopolymer tiles in high temperature and saturation conditions, Construction and Building Materials, 2021; 286: 122994. https://doi.org/10.1016/j.conbuildmat.2021.122994.
  • 12. Achyutha Kumar Reddy M, Akhila Y, Veerendrakumar C.K, Adamu M, E. Ibrahim Y, Tippa S. Optimizing the fresh and hardened properties of concrete containing bentonite and crumb rubber using response surface methodology. Sustainable Chemistry and Pharmacy, 2024; 42: 101873. https://doi.org/10.1016/j.scp.2024.101873.
  • 13. Guettala A, Mezghiche B, Chebili. Valuation on Industrial Waste on the Apparel for Concrete Sand. Geomaterials International Seminar Msila Algeria in March 2003.
  • 14. Haddadi. S. Rubber crumb dependence of the creep behavior of asphalt. PhD thesis, USTHB, 2007.
  • 15. Alwi Assaggaf R, Maslehuddin M, Uthman Al-Dulaijan S, A. Al-Osta M, Rizwan Ali M, Shameem M. Cost-effective treatment of crumb rubber to improve the properties of crumb-rubber concrete. Case Studies in Construction Materials, 2022; 16; e00881. https://doi.org/10.1016/j.cscm.2022.e00881.
  • 16. Adeboje A.O, Kehinde Kupolati W, Sadiku E.R, Ndambuki J.M, Kambole C. Experimental investigation of modified bentonite clay-crumb rubber concrete. Construction and Building Materials, 2020; 233: 117187. https://doi.org/10.1016/j.conbuildmat.2019.117187.
  • 17. Guelmine, L. The freeze-thaw durability of concrete containing the rubberaggregate of tire waste. Res. Eng. Struct. Mat. Vol. 8 Iss. 2(2022) 253-264. http://dx.doi.org/10.17515/resm2022.371ma1207.
  • 18. Ashwin N.R, Musa A, Ranjit J.S, Yasser E.I, Anant L.M, Omar S.A, Supriya J. Investigating crumb rubber-modified geopolymer composites derived from steel slag for enhanced thermal performance. Engineering Science and Technology, an International Journal, 2024; 59: 101880. https://doi.org/10.1016/j.jestch.2024.101880.
  • 19. Uno J, Marar K. Effect of waste crumb rubber tyre as partial replacement of fine aggregates on fresh and hardened properties of concrete. International Journal of Physical Sciences, 2024; 19(2); 96-111. https://doi.org/10.5897/IJPS2024.5068.
  • 20. Raghavachary Rajagopal, Madabushi., Ganta, Jyothikumari., Pamu, Yashwanth. Enhancing the Strength and the Environmental Performance of Concrete with Pre-Treated Crumb Rubber and Micro-Silica. Recycling. 9(3):32.2024 https://doi.org/10.3390/recycling9030032
  • 21. Alwi Assaggaf, Rida., Al-Dulaijan, Salah Uthman., Maslehuddin, Mohammed., Baghabra Al-Amoudi, Omar S., Ahmad, Shamsad , Ibrahim, Mohammed. Effect of different treatments of crumb rubber on the durability characteristics of rubberized concrete. Construction and Building Materials. 318, 2022, 126030. https://doi.org/10.1016/j.conbuildmat.2021.126030.
  • 22. Dong, F., Jiang, Y., Yu, X., Jin, Y., Lu, J., Zhushen, Y., Lu, H. Reconstruction of crosslinked network in terminal blend rubber powder modified asphalt with BR to enhance thermal storage stability and rheological properties. Construction and Building Materials. 458, 2025, 139751. https://doi.org/10.1016/j.conbuildmat.2024.139751.
  • 23. Wang, C., Wang, B. Su, X. ,He. R. Synthesis of graphene from waste rubber powder based on flash joule heating method and its influence on the performance of cement mortar. Construction and Building Materials. 451, 2024, 138871. https://doi.org/10.1016/j.conbuildmat.2024.138871.
  • 24. Zhu, H., Zeng, X., Lan, X., Long, G., Xie, Y., Liu, J. A novel high-damping metaconcrete through designing resonant aggregates made from recycled rubber powder-coated coarse aggregate. Construction and Building Materials. 427, 2024, 136266. https://doi.org/10.1016/j.conbuildmat.2024.136266.
  • 25. Zhai, S., Liu, C., Liu, G., Pang, B., Zhang, L., Liu, Z., Liu, L., Zhang.Y. Effect of modified rubber powder on the mechanical properties of cement-based materials. Journal of Materials Research and Technology. 19, 2022, 4141-4153. https://doi.org/10.1016/j.jmrt.2022.06.070.
  • 26. Amiri, M., Hatami, F., Mohammadi Golafshani, E. Evaluating the synergic effect of waste rubber powder and recycled concrete aggregate on mechanical properties and durability of concrete. Case Studies in Construction Materials. 15, 2021, e00639. https://doi.org/10.1016/j.cscm.2021.e00639.
  • 27. Zhu, Z., Zhou, M., Wang, B., Xu, X. Enhancing permeability and mechanical properties of rubber cement-based materials through surface modification of waste tire rubber powder. Construction and Building Materials. 425, 2024, 136098. https://doi.org/10.1016/j.conbuildmat.2024.136098.
  • 28. NA442. Composition, specifications and criteria for common cements. Publishing and distribution: IANOR, Institut Algérien de Normalisation, 2013.
  • 29. NF P18-452. Concretes - Measuring the flow time of concretes and mortars using a workabilitymeter, Afnor Editions, 2017.
  • 30. EN 196-1. Methods of testing cement - Part 1 : determination of strength. Afnor Editions, 2016.
  • 31. NF P18-406. structural concretes Determination of the mechanical properties of concrete. Compression test. Published by the French standards association Afnor, 1981.
  • 32. Neville A.M, Properties of concrete, French edition, Edition Eyrolles, Paris, 2000.
  • 33. Rahmani H, Gheib M. M. CO2 curing of hydrated lime modified pervious concretes, Magazine of Civil Engineering, 2019; 92(8): 106-114. https://doi.org/10.18720/MCE.92.9.
  • 34. Guelmine L, Hadjab H., Benazzouk A. Effect of elevated temperatures on physical and mechanical properties of recycled rubber mortar. Construction and Building Materials, 2016; 126: 77- 85. https://doi.org/10.1016/j.conbuildmat.2016.09.018.
  • 35. Guelmine L, Hadda H. Effect of Recycled Rubber Particles on the Deicing Salt-Scaling Durability of Concrete, Recent Progress in Materials, 2021; 3 (3). https://doi:10.21926/rpm.2103033.
  • 36. Coatanlem P, Jauberthie R, Rendell F. Lightweight wood chipping concrete durability. Construction and Building Materials, 2006; 20: 776-781. https://doi.org/10.1016/j.conbuildmat.2005.01.057.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bd6533e-b7ff-4811-b381-9d93e3a0190a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.