PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An analysis of the chemistry, mineralogy and texture of waste dolomite powder used to identify its potential application in industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, characterization of dolomite powder was carried out in order to specify possible industrial applications. After the technological use of dolomite aggregates, the remaining fine powder becomes a waste. Raw and calcined powder samples were subject to mineralogical, textural and chemical studies involving leaching tests. The results of the calcination process indicate that the carbonate minerals present in the material sample undergo complete decomposition to form oxides. After the calcination, the material is practically non-porous, and its surface area is more than five times lower than that of the raw material. However, due to the high content of calcia in the calcined sample (CaO > 45% wt.), the material cannot be used as an additive in cement. The leaching tests showed that the concentration of metals released from the dolomite powder is low enough to classify the material as hazardous waste according to the TCLP test. Moreover, the concentration of metals that can get into the environment does not exceed permissible values as set by Polish law. Thus, it is recommended and justified to carry out detailed tests for the purpose of environmental protection; i.e. wet flue gas desulfurization, heavy metals absorption, and CO2 capture.
Wydawca
Rocznik
Strony
343--352
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Environmental Protection; al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • Mineral and Energy Economy Research Institute of the Polish Academy of Sciences; ul. J. Wybickiego 7, 31-261 Krakow, Poland
autor
  • Research and Development Center for Mining of Chemical Raw Materials CHEMKOP Ltd.; ul. J. Wybickiego 7, 31-261 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry; al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • Ahmaruzzaman M., 2011. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Advances in Colloid and Interface Science, 166(1–2), 36–59.
  • Alaibdo A.A., Elmoaty A. & Auda E.M., 2014. Re-use of waste marble dust in the production of cement and concrete. Construction and Building Materials, 50, 28–41.
  • Aziz H.A., Adlan M.N. & Ariffin K.S., 2008. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: Post treatment by high quality limestone. Bioresource Technology, 99, 1578–1583.
  • Bąk B., Radwanek-Bąk B. & Wyszomirski P., 2011. Aktualny przegląd krajowych złóż dolomitów w aspekcie wykorzystania w przemyśle materiałów ogniotrwałych. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 27(1), 21–47.
  • Beruto D.T., Vecchiattini R. & Giordani M., 2003. Solid products and rate-limiting step in the thermal half decomposition of natural dolomite in a CO2 (g) atmosphere. Thermochimica Acta, 405, 183–194.
  • Bilgin N., Yeprem H.A., Arslan S., Bilgin A., Günay E. & Marşoglu M., 2012. Use of waste marble powder in brick industry. Construction and Building Materials, 29, 449– 457.
  • Bogahawatta V.T.L., Abdul-Jaleel A. & Behbehani M., 2004. The heat treatment and particle size effects in the thermal decomposition of dolomite for separation of constituents. Mineral Processing and Extractive Metallurgy, doi: 10.1179/037195504225005750.
  • de Boer J.H., 1958. [in:] Everett D.H. & Stone F.S. (eds), The structure and Properties of Porous Materials, Butterworth, London, 68.
  • Brunauer S., Emmett P.H. & Teller E., 1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319.
  • Chen C.G., Sun C.J., Gau S.H., Wua C.W. & Chen Y.L., 2013. The effects of the mechanical-chemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste. Waste Management, 33, 858–865.
  • Dehghani A. & Bridjanian H., 2010. Flue gas desulfurization methods to conserve the environment. Petroleum & Coal, 52(4), 220–226.
  • Dell’Orso M., Mangialardi T., Paolini A.E. & Piga L., 2012. Evaluation of the leachability of heavy metals from cement- based materials. Journal of Hazardous Materials, 227–228, 1–8.
  • Disfani M.M., Arulrajah A., Bo M.W. & Hankour R., 2011. Recycled crushed glass in work applications. Waste Management, 31, 2341–2351.
  • Engelsen C.J., Wibetoe G., van der Sloot H.A., Lund W. & Petkovic G., 2012. Field site leaching from recycled concrete aggregates applied as sub-base material in road construction. Science of the Total Environment, 427–428, 86–97.
  • Fang F., Li Z.S. & Cai N.S., 2009. CO2 capture from flue gases using a fluidized bed reactor with limestone. Korean Journal of Chemical Engineering, 26(5), 1414–1421.
  • Galvín A.P., Ayuso J., Agrela F., Barbudo A. & Jiménez J.R., 2013. Analysis of leaching procedures for environmental risk assessment of recycled aggregate use in unpaved roads. Construction and Building Materials, 40, 1207–1214.
  • Gregg S.J. & Sing K.S.W., 1982. Adsorption, Surface Area and Porosity. Academic Press, London.
  • Gruszecka-Kosowska A. & Mikoda B., 2015. Commercial utilization of mineral waste: review of analysis methods determining its compliance with environmental laws. Geology, Geophysics & Environment, 41(3), 263–274, doi: 10.7494/geol.2015.41.3.263.
  • Harris D.L. & Lottermoser B.G., 2006. Evaluation of phosphate fertilizers for ameliorating acid mine waste. Applied Geochemistry, 21, 1216–1225.
  • Helios-Rybicka E., Jarosz-Krzemińska E. & Gawlicki M., 2013. Zastosowanie zneutralizowanych, potrawiennych materiałów odpadowych w postaci szlamów uzyskanych w wyniku trawienia powierzchni metalicznych. PL 216497 B1.
  • Hewlett P., 1998. Lea’s Chemistry of Cement and Concrete. Arnold, London.
  • Kinuthia J.M. & Nidzam R.M., 2011. Towards zero industrial waste: Utilisation of brick dust waste in sustainable construction. Waste Management, 31, 1867–1878.
  • Konik Z., Małolepszy J., Roszczynialski W. & Stok A., 2007. Production of expansive additive to portland cement. Journal of the European Ceramic Society, 27, 605–609.
  • Kozłowski S., 1986. Surowce skalne Polski. Wydawnictwa Geologiczne, Warszawa.
  • Kurdowski W., 2010. Chemia cementu i betonu. Stowarzyszenie Producentów Cementu, Kraków, Wydawnictwo Naukowe PWN, Warszawa.
  • Lewandowska A., 1991. Minerals of the zone of altered Devonian dolomites from Dubie area near Kraków (Southern Poland). Mineralogia Polonica, 22(2), 20–38.
  • Macías F., Caraballo M.A. & Nieto J.M., 2012. Environmental assessment and management of metal-rich wastes generated in acid mine drainage passive remediation systems. Journal of Hazardous Materials, 229–30, 107–114.
  • Mahmoud M.E., Hafez O.F., Alrefaay A. & Osman M.M., 2010. Performance evaluation of hybrid inorganic/organic adsorbents in removal and preconcentration of heavy metals from drinking and industrial waste water. Desalination 253, 9–15.
  • Małolepszy J., Gawlicki M., Brylicki W., Deja J., Żurawski S., Szczepaniak K., Mrozowicz J. & Rutkowski J., 1994. Zestaw surowcowy do wytwarzania klinkieru portlandzkiego. PL 162748 B1.
  • Mangwandi C., Tao, L.J., Albadarin A.B. & Walker G.M., 2013. Alternative method for producing organic fertiliser from anaerobic digestion liquor and limestone powder: high shear wet granulation. Powder Technology, 233, 245–254.
  • Merrikhpour H. & Jalali J., 2012. Waste calcite sludge as an adsorbent for the removal of cadmium, copper, lead and zinc from aqueous solutions. Clean Technologies and Environmental Policy, 14, 845–855.
  • Ney R. (red. nauk.), 2000. Surowce skalne: surowce węglanowe. Series: Surowce Mineralne Polski, Wyd. Instytutu GSMiE PAN, Kraków.
  • Özyuğuran A. & Ersoy-Meriçboyu A., 2012. Using hydrated lime and dolomite for sulfur dioxide removal from flue gases. Chemical Engineering Transactions, 29, 1051–1056.
  • Park J.Y. & Chertow M.R., 2014. Establishing and testing the “reuse potential” indicator for managing wastes as resources. Journal of Environmental Management, 137, 45–53.
  • Pérez-López R., Castillo J., Quispe D. & Nieto J.M., 2010. Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste. Journal of Hazardous Materials, 177, 762–772.
  • Peukert S., 2000. Cementy powszechnego użytku i specjalne: podstawy produkcji, właściwości i zastosowanie. Stowarzyszenie Producentów Cementu, Kraków.
  • PN-C87006-2:1996 Nawozy sztuczne wapniowo-magnezowe – Podział, oznaczenie i wymagania.
  • PN-EN 12457-1:2006 Charakteryzowanie odpadów – Wymywanie – Badanie zgodności w odniesieniu do wymywania ziarnistych materiałów odpadowych i osadów – Część 1: Jednostopniowe badanie porcjowe przy stosunku cieczy do fazy stałej 2 l/kg w przypadku materiałów o wysokiej zawartości fazy stałej i wielkości cząstek poniżej 4 mm (bez redukcji lub z redukcją wielkości).
  • Poon C.S. & Chan D., 2006. Feasible use of recycled concrete aggregates and crushed clay brick as unbound road subbase. Construction and Building Materials, 20, 578–585.
  • Rashad M.M. & Baioumy H.M., 2005. Chemical processing of dolomite associated with the phosphorites for production of magnesium sulfate heptahydrate. The European Journal of Mineral Processing and Environmental Protection, 5(2), 174–183.
  • Romero D., James J., Mora R. & Hays C.D., 2013. Study on the mechanical and environmental properties of concrete containing cathode ray tube glass aggregate. Waste Management, 33, 1659–1666.
  • Rozporządzenie Ministra Środowiska z dnia 18 listopada 2014 r. w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego. Dz.U. 2014, poz. 1800 [Journal of Laws from 2014, item 1800].
  • Said A., Mattila H.P., Järvinen M. & Zevenhoven R., 2013. Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2. Applied Energy, 112, 765–771.
  • Sarbak Z., 2005. Metody instrumentalne w badaniach adsorbentów i katalizatorów. Chemia – Uniwersytet im. Adama Mickiewicza w Poznaniu, 75, Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza, Poznań.
  • Skarżyńska K.M., 1995. Reuse of coal mining wastes in civil engineering. Part 2: Utilization of minestone. Waste Management, 15(2), 83–126.
  • Tozsin G., Arol A.I., Oztas T. & Kalkan E., 2014. Using marble wastes as a soil amendment for acidic soil neutralization. Journal of Environmental Management, 133, 374–377.
  • Trypuć M. & Białowicz K., 2011. CaCO3 production using liquid waste from Solvay method. Journal of Cleaner Production, 19, 751–756.
  • Uliasz-Bocheńczyk A., Mokrzycki E., Piotrowski Z. & Pomykała R., 2009. Estimation of CO2 sequestration potential via mineral carbonation in fly ash from lignite combustion in Poland. Energy Procedia, 1, 4873–4879.
  • US EPA, 1992. SW-846 Test Method 1311: Toxicity Characteristic Leaching Procedure, part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. Rev. 0, Office of Solid Waste, Washington, DC.
  • US EPA, 2014. RCRA Orientation Manual 2014. Resource Conservation and Recovery Act. Office of Resource Conservation and Recovery Program Management. Communications and Analysis Office, Washington, DC.
  • Wang Y.H., Lin S.H. & Juang R.S., 2003. Removal of heavy metal ions from aqueous solutions using various lowcost adsorbents. Journal of Hazardous Materials, 102(2–3), 291–302.
  • Wdowin M. & Gruszecka A.M., 2012. Charakterystyka mineralogiczno-chemiczna i teksturalna odpadów poflotacyjnych z przemysłu Zn-Pb pod kątem dalszych rozważań wykorzystania ich jako sorbentów. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 28(3), 55–69.
  • Xing S., Zhao M. & Ma Z., 2011. Removal of heavy metal ions from aqueous solution using red loess as an adsorbent. Journal of Environmental Science, 23, 1497–1502.
  • Yoshimi I. & Kenichi O., 1969. Method for removing sulfur dioxide from flue gases of a combustion furnace. US 3481289 A.
  • Zhang J., Liu J., Nie Y. & Jin Y., 2008. Comparison of the fixation of heavy metals in raw material, clinker and mortar using a BCR sequential extraction procedure and NEN7341 test. Cement and Concrete Research, 38, 675–680.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bd56975-ab52-4bf2-9f89-041ab5eb5e5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.