PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Propagation of non-adherent HL-60 cells in batch cultures maintained in staticand wave-type agitated systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Typically applied static (i.e. non-agitated) cultures do not provide sufficient conditions for efficient propagation of suspended non-adherent cells, in general. Feasibility of small-scale wave-type agitated single-use bioreactors for gentle agitation underlies applicability of such systems for scaling-up of fragile biomass of animal cells. The basic aim of the study was to compare the results of non-adherent HL-60 cell propagation performed referentially as the batch culture in typical static (i.e. non-agitated) disposable culture flasks (50 cm3 of culture medium) and in ReadyToProcess WAVETM25 bioreactor system (GE Healthcare) equipped with disposable culture bag (300 cm3 of culture medium) subjected to continuous wave-type agitation. The density and viability of HL-60 cells were significantly higher for the bioprocess subjected to wave-type agitation, than in the reference static culture. The values of the specific rate of glucose consumption per cell (rglc=cell) exhibited by HL-60 cells maintained in the system with continuous wave-type agitation was significantly lower (i.e. up to more than 42%) than the values noted for the static culture, for exactly the same time-points of two compared cultures. The results of the studies undoubtedly and comprehensively confirmed the applicability of the studied disposable bioreactor with wave-induced agitation as the right platform for proceeding the propagation of non- adherent HL-60 cells and for providing the culture conditions required by HL-60 cells for sustainable metabolism.
Rocznik
Strony
167–--177
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1,00-645 Warsaw, Poland
  • University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-096 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1,00-645 Warsaw, Poland
Bibliografia
  • 1. Clicke M.F., Mölleryd C., Zhang Y., Lindskog E., Walsh K., Chotteau V., 2011. Study of a recombinant CHO cellline producing a monoclonal antibody by ATF or TFF external filter perfusion in a WAVE Bioreactor™.BMCProc., 5, P105. DOI: 10.1186/1753-6561-5-S8-P105.
  • 2. Eibl R., Werner S., Eibl D., 2009. Disposable bioreactors for plant liquid cultures at litre-scale.Eng. Life Sci., 9,156–164. DOI: 10.1002/elsc.200800102.
  • 3. Gottschalk U., Brorson K., Shukla A.A., 2012. The need for innovation in biomanufacturing.Nat. Biotechnol., 30,489–492. DOI: 10.1038/nbt.2263.
  • 4. Imseng N., Steiger N., Frasson D., Sievers M., Tappe A., Greller G., Eibl D., Eibl R., 2014. Single-use wave-mixedversus stirred bioreactors for insect-cell/BEVS-based protein expression at benchtop scale.Eng. Life Sci., 14,264–271. DOI: 10.1002/elsc.201300131.
  • 5. Marks D.M., 2003. Equipment design considerations for large scale cell culture.Cytotechnology, 42, 21–33.DOI: 10.1023/A:1026103405618.
  • 6. Nienow A.W., Scott W.H., Hewitt C.J., Thomas C.R., Lewis G., Amanullah A., Kiss R., Meier S.J., 2013. Scale-down studies for assessing the impact of different stress parameters on growth and product quality during animalcell culture.Chem. Eng. Res. Des., 91, 2265–2274. DOI: 10.1016/j.cherd.2013.04.002.
  • 7. Odeleye A.O.O., Marsh D.T.J., Osborne M.D. Lye G.J., Micheletti M., 2014. On the fluid dynamics of a laboratoryscale single-use stirred bioreactor.Chem. Eng. Sci.111, 299–312. DOI: 10.1016/j.ces.2014.02.032.
  • 8. Pilarek M., Godlewska K., Kuźmińska A., Wojasiński M., D ̨abkowska K., 2017. Enhanced chondrocyte proliferationin a prototyped culture system with wave-induced agitation.Chem. Process Eng., 38, 321–330. DOI: 10.1515/cpe-2017-0025.
  • 9. Pilarek M., Sobieszuk P., Wierzchowski K., D ̨abkowska K., 2018. Impact of operating parameters on values of avolumetric mass transfer coefficient in a single-use bioreactor with wave-induced agitation.Chem. Eng. Res. Des.,136, 1–10. DOI: 10.1016/j.cherd.2018.04.012.
  • 10. Pollard D., Kistler C., 2016. Disposable bioreactors, In: Larroche C., Sanroman M.A., Du G., Pandey A. (Eds.),Current Developments in Biotechnology and Bioengineering: Bioprocess, Bioreactors and Controls. Elsevier,Amsterdam, 353–380.
  • 11. Sather D.N., Armann J., Ching L.K., Mavrantoni A., Selhorn G., Caldwell Z., Yu X., Wood B., Self S., Kalams S.,Stamatatos L., 2009. Factors associated with the development of cross-reactive neutralizing antibodies duringHuman Immunodeficiency Virus type 1 infection.J. Virol., 83, 757–769. DOI: 10.1128/JVI.00283-09.
  • 12. Sette A., Barbaroux M., 2006. Properties of materials used in single-use flexible containers: requirements andanalysis.BioPharm Int., 6, 1–8.
  • 13. Shukla A.A., Gottschalk U., 2012. Single-use disposable technologies for biopharmaceutical manufacturing.TrendsBiotechnol., 31, 147–154. DOI: 10.1016/j.tibtech.2012.10.004.
  • 14. Sonnaert M., Papantoniou I., Luyten F.P., Schrooten J.I., 2015. Quantitative validation of the PrestoBlue metabolicassay for online monitoring of cell proliferation in a 3D perfusion bioreactor system.Tissue Eng. Part C, 21,519–529. DOI: 10.1089/ten.TEC.2014.0255.
  • 15. Wang L., Hu H., Yang J., Wang F., Kaisermayer C., Zhou P., 2012. High yield of human monoclonal anti-body produced by stably transfected Drosophila Schneider 2 cells in perfusion culture using wave bioreactor.Mol. Biotechnol., 52, 170–179. DOI: 10.1007/s12033-011-9484-5.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bd31c18-406f-46b9-9d8e-2bd30307475f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.