PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulations of the exploitation parameters of the rotary feeder

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the problems of determining the mass efficiency of a rotary feeder depending on the selection of design parameters of the device, such as outer diameter, number of blades and rotational speed of the rotor. The hitherto theoretical methods of calculating the feeder efficiency were presented, as well as a new method of determining the device operation parameters was proposed. For this purpose, the numerical Discrete Element Method was used, which allowed simulating the transport of limestone powder in a cell feeder with various design variants. The results of the tests showed that the above design parameters affect the instantaneous efficiency of the feeder and thus impact the distribution of the dosed material during the operation of the device. Depending on the design solution, the simulation results gave information on the fill factor of the feeders. The study showed a significant potential of DEM simulation in the design of circular feeders intended for dosing bulk materials.
Wydawca
Rocznik
Tom
Strony
Bibliogr. 33 poz., rys., tab.
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology A. Mickiewicza Av. 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology A. Mickiewicza Av. 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology A. Mickiewicza Av. 30, 30-059 Krakow, Poland
Bibliografia
  • [1] P. Kulinowski, P. Kasza, J. Zarzycki, „Influence of design parameters of idler bearing units on the energy consumption of a belt conveyor”. Sustainability, vol. 13, pp. 1-13, 2021.
  • [2] W. Kruszelnicka, J. Flizikowski, A. Tomporowski, A. Mroziński, A. Lewandowski. „Analysis of biomateriał comminution proces in a roller mill with inter-roll plate in terms of CO2 emissions Part I. Model components”. Przemysł chemiczny, vol. 99(6), pp. 934-938, 2020.
  • [3] W. Kruszelnicka, J. Flizikowski, A. Tomporowski, A. Mroziński, A. Lewandowski. „Analysis of biomaterial comminution process in a roller mill with inter-roll plate in terms of CO2 emissions Part II. CO2 emission assessment”. Przemysł chemiczny, vol. 99 (8), pp. 1206-1209, 2019.
  • [4] W. Kruszelnicka, P. Bałdowska-Witos, R. Kasner, J. Flizikowski, A. Tomporowski, J. Rudnicki. „Evaluation of emissivity and environmental safety of biomass grinders drive”. Przemysł chemiczny, vol. 98 (9), pp. 1494-1498, 2019.
  • [5] D. Kretz, S. Callau-Monje, M. Hitschler, A. Hien, M. Raedle, J. Hesser. “Discrete element method (DEM) simulation and validation of a screw feeder system”. Powder Technology, vol. 287, pp. 131-138, 2016.
  • [6] D. Markauskas, A. Ramírez-Gómez, R. Kacianauskas, E. Zdancevicius. “Maize grain shape approaches for DEM modelling”. Computers and Electronics in Agriculture, vol. 118, pp. 247-258, 2015.
  • [7] D. Minglani, A. Sharma, H. Pandey, R. Dayal, J.B. Joshi, S. Subramaniam. “A review of granular flow in screw feeders and conveyors”. Powder Technology, vol. 366, pp. 369- 381, 2020.
  • [8] S. Ji, S. Wang, Z. Peng. “Influence of external pressure on granular flow in a cylindrical silo based on discrete element method”. Powder Technology, vol. 356, pp. 702-714, 2019
  • [9] B. Karwat, R. Machnik, J. Niedźwiedzki, M. Nogaj, P. Rubacha, E. Stańczyk. “Calibration of bulk material model in Discrete Element Method on example of perlite D18-DN”. Eksploatacja i Niezawodność – Maintenance and Reliability, vol. 21(2), pp. 351-357, 2019.
  • [10] B. Karwat, P. Rubacha, E. Stańczyk. “Simulational and experimental determination of the exploitation parameters of a screw conveyor”. Eksploatacja i Niezawodność – Maintenance and Reliability, vol. 22 (4), pp. 741-747, 2020.
  • [11] B. Karwat, P. Rubacha, E. Stańczyk. “Optimization of a screw conveyor’s exploitation parameters”. Eksploatacja i Niezawodność – Maintenance and Reliability, vol. 23(2), pp. 285-293, 2021.
  • [12] M. Bembenek, P. Wdaniec, E. Baran. "Production of a granulated mineral fertilizer from waste gypsum in a flat-matrix”. Przemysł Chemiczny, vol. 99, pp. 236-238, 2020.
  • [13] M. Bembenek, A. Zięba, M. Kopyściański, Krawczyk J. "Analysis of the impact of the consolidated material on the morphology of briquettes produced in a roller press”. Journal of Materials Engineering and Performance, vol. 29, pp. 3792-379, 2020.
  • [14] N. Somsunk, T. Wessapan, S. Teekasap. “Design and development of a rotary airlock valve for using in continuous pyrolysis process to improve performance”. Advanced Materials Research, pp. 71-75, 2011.
  • [15] D. Fang, Li Yong. “Parameter simulation and analysis of rotary feeder”. IOP Conference Series: Materials Science and Engineering, 2020, pp. 1-7.
  • [16] P.W. Wypych. “Effect of Rotary Valve Leakage on Pneumatic Conveying Performance”. Particulate Science and Technology, vol. 26, pp. 257-272, 2008.
  • [17] J. Góźdź, M. Posiadała. „Dozowniki celkowe typ DC do materiałów sypkich”. Przemysł Spożywczy, vol. 72, pp. 24-25, 2018
  • [18] S. Nagulmeera, M. Anilkumar. “Design, Modeling and Analysis of Rotary Air-Lock Valve”. International Journal Of Computational Engineering Research, vol. 3(12), pp. 53- 57, 2013.
  • [19] M.Y. Gundogdu. “Design improvements on rotary valve particle feeders used for obtaining suspended airflows”. Powder Technology, vol. 139, pp. 76-80, 2004.
  • [20] D. Trivedi, J. Andhariya, H. Chavda, N. Jadav, H. Rana. “Desing and Value Analysis of Rotary Valve”. Journal of Emerging Technologies and Innovative Research, vol. 5(11), pp. 820-826, 2018.
  • [21] P. Lato, V. Banjac, P. Milada, A.P. Jovanovic, O. Duragic, D. Colovic, R. Colovic. “Mathematical model, numerical simulation and optimization of rotating valve feeder in animal feed production”. Animal Feed Science and Technology, vol. 272, 2021.
  • [22] C. Windows-Yule, D. Tunuguntla, D. Parker. “Numerical modelling of granular flows: a reality check”. Computational Particle Mechanics, vol. 3, pp. 311-332, 2015.
  • [23] G. Lu, J. Third, C. Müller. “Discrete element models for non-spherical particle systems: from theoretical developments to applications”. Chemical Engineering Science, vol. 127, pp. 425-465, 2015.
  • [24] J. Wiacek, J. Kafashan, H. Ramon, A.M. Mouazend. “Modelling and simulation of fruit drop tests by discrete element method”. Biosystems Engineering, vol. 212, pp. 228- 240, 2021.
  • [25] J. Wiącek, J. Horabik, P. Parafiniuk, M. Bańda, R. Kobyłka, M. Stasiak, M. Molenda. “Calibration of discrete-elementmethod model parameters of bulk wheat for storage”. Biosystems Engineering, vol. 200, pp. 298-314, 2020.
  • [26] C.J. Coetzee. ”Calibration of the Discrete Element Method and the effect of particle shape”. Powder Technology vol. 297, pp. 50-70, 2016.
  • [27] J.P. Plassiard, N. Belheine, F.V. Donzé. “A spherical discrete element model: calibration procedure and incremental response”. Granular Matter, vol.11, pp. 293-306, 2009.
  • [28] C. González-Montellano, J.M. Fuentes, E. Ayuga-Téllez, F. Ayuga. “Determination of the mechanical properties of maize grains and olives required for use in DEM simulations”. Journal of Food Engineering, vol. 111, pp. 553-562, 2012.
  • [29] G.K.P. Barrios, R.M. Carvalho, A. Kwade, L.M. Tavares. “Contact parameter estimation for DEM simulation of iron ore pellet handling”. Powder Technology, vol. 248, pp. 84- 83, 2013.
  • [30] C. Hoshishima, S. Ohsaki, H. Nakamura, and S. Watano, “Parameter calibration of discrete element method modelling for cohesive and non-spherical particles of powder,” Powder Technology, vol. 386, pp. 199-208, 2021
  • [31] C.J. Coetzee. “Calibration of the discrete element method: Strategies for spherical and non-spherical particles”, Powder Technology, vol. 364, pp. 851-878, 2020.
  • [32] C.J. Coetzee. “Review: Calibration of the discrete element method”. Powder Technology, vol. 310, pp. 104-142, 2017.
  • [33] M. Bembenek, M. Buczak, K. Baiul. “Modelling of the FineGrained Materials Briquetting Process in a Roller Press with the Discrete Element Method”, Materials, vol. 15(14), 2022.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bd22e71-a89a-4a86-811a-3b4de1ae49ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.