PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Relationship between the concentrations of PM2.5 indoors obtained by using the optical and gravimetric methods: preliminary analysis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents preliminary analysis of measurements of the mass concentrations of PM2.5 in the indoor environment, obtained with the use of two optical instruments: (Grimm device and low-cost sensor) and a sampler based on the gravimetric method (SKC). It was found that the measurement of PM2.5 using an optical device with active sampling underestimates the actual mass concentration of this mode (PM2.5), while measurement using an optical device with passive sampling of air overestimates the concentration of PM2.5. It has been shown that the physical relationship between the mass concentrations of airborne particles obtained with an optical sensor (Csensor) and concentrations obtained with the gravimetric method (Cgrav) is not linear. However, for practical reasons, the correct (“true”) concentration levels of PM2.5 in an indoor environment can be estimated by converting sensor data according to a simple linear equation, i.e., Cgrav = a Csensor. The coefficient a for the sensor used was estimated at 0.45.
Rocznik
Strony
105--113
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
  • Prof.; Faculty of Power and Environmental Engineering, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
Bibliografia
  • [1] Rogula-Kozłowska W., Pastuszka J.S., & Talik E. (2008). Influence of vehicular traffic on concentration and particle surface composition of PM10 and PM2.5 in Zabrze, Poland. Polish Journal of Environmental Studies, 17, 539-548.
  • [2] Holstius, D.M., Pillarisetti, A., Smith, K.R., & Seto, E. (2014). Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California. Atmospheric Measurement Technology, 7, 1121-1131.
  • [3] Feenstra, B., Papastolou, V., Hasheminassab, S., Zhang, H., Der Boghossian, B., Cocker, D., & Polidori, A. (2019). Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site. Atmospheric Environment, 216, 116946, https://doi.org/10.1016/j.atmosenv.2019.116946.
  • [4] Yoo, E.H., Zammit-Mangion, A., & Chipeta, M.G. (2020). Adaptive spatial sampling design for environmental field prediction using low-cost sensing technologies. Atmospheric Environment, 221, 117092, https://doi.org/10.1016/j.atmosenv.117091
  • [5] Cavaliere, A., Carotenuto, F., Di Gennaro, F., Gioli, B., Gualtieri G., Martelli, F., Matese, A., Toscano, P., Vagnoli, C., & Zaldei, A. (2018). Development of low-cost air quality stations for next generation monitoring networks: Calibration and validation of PM2.5 and PM10 sensors. Sensors, 18, 2843, https://doi:10.3390/s18092843.
  • [6] Castell, N., Dauge, F.R., Schneider, P., Vogt, M., Lerner, U., Fischbain, A., Broday, D., & Bartnova, A. (2017). Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environment International, 99, 293-302.
  • [7] Jayaratne, R., Liu, X., Ahn, K-H., Asumadu-Sakyi, A., Fisher, G., Gao, J., Mabon A., Mazaheri, M., Mullins, B., Nyaku, M., Ristowski, Z., Scorgie, Y., Thai, P., Dunbabin, M., & Morawska L. (2020). Lowcost PM2.5 sensors: an assessment of their suitability for various applications. Aerosol and Air Quality Research, 20, 520-532.
  • [8] Pastuszka, J.S., Wawroś, A., Talik, E., & Paw U, K.T. (2003). Optical and chemical characteristics of the atmospheric aerosol in four towns in southern Poland. The Science of the Total Environment 309, 237-251.
  • [9] Wawroś, A., Talik, E., Żelechower, M., Pastuszka, J.S., Skrzypek, D., & Ujma, Z. (2003). Seasonal variation in the chemical composition and morphology of aerosol particles in the centre of Katowice, Poland. Polish Journal of Environmental Studies 12, 619-627.
  • [10] Pastuszka, J., Hławiczka, S., & Willeke, K. (1993). Particulate pollution levels in Katowice, a highly industrialized Polish city. Atmospheric Environment, 27B, 59-65.
  • [11] Wawroś, A., Talik, E., & Pastuszka, J.S. (2003). Investigation of winter atmospheric aerosol particles in downtown Katowice using XPS and SEM. Microscopy and Microanalysis, 9, 349-358.
  • [12] Pastuszka, J.S., & Okada, K. (1995). Features of atmospheric aerosol particles in Katowice, Poland. The Science of the Total Environment, 175, 179-188.
  • [13] Okada, K. (2016). Atmospheric aerosol particles (In:) Synergic Influence of Gaseous, Particulate, and Biological Pollutants on Human Health. (Ed. J.S. Pastuszka). CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, 39-67.
  • [14] Pastuszka, J.S., Rogula-Kozłowska, W., Klejnowski, K., & Rogula-Kopiec, P. (2015). Optical properties of fine particulate matter in Upper Silesia, Poland. Atmosphere, 6, 1521-1538.
  • [15] Utrecht (2017). https://www.samenmetenaanluchtkwaliteit.nl/minutes-intl-meeting-air-quality-sensors-13-2-2017
  • [16] Lewis, A.C., Schneidemesser, E., & Peltier, R.E. (Eds.). (2018). Low-cost sensors for the measurement of atmospheric composition: overview of topic and future applications, World Meteorological Organization, Geneva 2, Switzerland.
  • [17] Texas Instruments Incorporated (2016). PM2.5/PM10 Particle sensor analog front-end for air quality monitoring design. TI Report TIDUB65C.
  • [18] Johnson, K.K., Bergin, M.H., Russel, A.G., & Hagler, G.S. (2016). Using low cost sensors to measure ambient particulate matter concentrations on on-road emission factors. Atmos. Meas. Tech. Discuss., https://doi/10.5194/amt-2015-331
  • [19] Wang, Y., Li, J., Zhang, Q., Jiang, J., & Biswas, P. (2015). Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement. Aerosol Science and Technology, 49, 1063-1077.
  • [20] Kowalska, M., Mainka, A., & Mucha, W. (2019). The usefulness of an optical monitor for the assessment human exposure to fine dust in indoor air (in Polish). Medycyna Pracy, 70, 213-220. https//doi.org//10.130757/imp.5893.
  • [21] Mainka, A., Brągoszewska, E., Kozielska, B., Pastuszka, J.S., & Zajusz-Zubek, E. (2015). Indoor air quality in urban nursery schools in Gliwice, Poland: Analysis of the case study. Atmospheric Pollution Research, 6, 1098-1104.
  • [22] Rogula-Kopiec, P., Rogula-Kozłowska, W., Pastuszka, J.S., & Mathews, B. (2018). Air pollution of beauty salons by cosmetics from the analysis of suspended particulate matter. Environmental Chemistry Letters (https://doi.org/10.1007/s10311-018-0798-4)
  • [23] Pastuszka, J.S., Górny, R.L., Lis, D. (1995) Migration of ambient aerosol into indoor environment in Upper Silesia, Poland. Journal of Aerosol Science, 26, Suppl. 1, 517-518.
  • [24] Pastuszka J.S., Cembrzyńska J., Orłowski C., Mucha W. (2018). Analiza możliwości monitorowania stężeń pyłu respirabilnego przy pomocy czujników optycznych (Possibility analysis of monitoring respirable dust concentrations with the use of optical sensors). Proc. Conf. Aktualne Problemy w Inżynierii i Ochronie Atmosfery (Eds. Kuropka J., Gaj K., Sówka I.) Politechnika Wrocławska, Wrocław Poland,174-181.
  • [25] Cavaliere, A., Carotenuto, F., Di Gennaro, F., Gioli, B., Gualtieri G., Martelli, F., Matese, A., Toscano, P., Vagnoli, C., & Zaldei, A. (2018). Development of low-cost air quality stations for next generation monitoring networks: Calibration and validation of PM2.5 and PM10 sensors. Sensors, 18, 2843, https://doi:10.3390/s18092843.
  • [26] Liu, H-Y., Schneider, P., Haugen, R., & Vogt, M. (2019). Performance assessment of a low-cost PM2.5 sensor for a near four-month period in Oslo, Norway. Atmosphere, 10, 41, doi:103390/atmos10020041.
  • [27] Badura, M., Batog P., Drzeniecka-Osiadacz, A., & Modzel, P. (2018). Evaluation of low-cost sensors for ambient PM2.5 monitoring. Journal of Sensors, 2018, https://doi.org/10.1155/2018/5096540.
  • [28] Hinds, W.C. (1982). Aerosol Technology, John Wiley, New York.
  • [29] van der Meulen, A., Plomp, A., Oesburg, F., Buringh, E., van Aalst, R.M., & Hoevers, W. (1980). Intercomparison of optical particle counters under conditions of normal operation. Atmospheric Environment, 14, 495-499.
  • [30] Gebhart, J. (1993). Optical direct-reading techniques: light intensity systems. (In:) Aerosol Measurements: Principles, Techniques and Applications (Eds.: K. Willeke and P. Baron), Van Nostrand Reinhold, New York, N.Y., 313-344.
  • [31] Johnson, K.K., Bergin, M.H., Russel, A.G., & Hagler, G.S. (2018). Field test of several low-cost particulate matter sensors in high and low concentration urban environments. Aerosol and Air Quality Research, 18, 565-578.
  • [32] Manikonda, A., Ziková, N., Hopke, P.K., & Ferro, A.R. (2016). Laboratory assessment of low-cost PM monitors. Journal of Aerosol Science, 102, 29-40.
  • [33] Jayaratne, R., Liu, X., Thai, P., Dunbabin, M., & Morawska, L. (2018). The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog. Atmospheric Measurement Technology, 11, 4883-4890.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bc9c2a3-24d3-4085-a4a6-66ae59af11c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.