PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Management of disused lead-acid batteries in the context of the eco-balance analysis

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article describes the results of the eco-balance analysis of the disused lead-acid batteries recycling technology. The analysis will be made using the life cycle assessment (LCA) method. The analysis was developed using the SimaPro7.3.3. software. The life cycle assessment (LCA) was made using Ecological Scarcity and IMPACT2002 + methods. The results are shown as environmental points [Pt], which reflect the potential level of environmental burdens exerted by the analysed object. The results are presented in the environmental categories, which are grouped in the impact categories. For the Ecological Scarcity method, these are emission into air, water, soil, energy, and natural resources and deposited waste. For the IMPACT2002 + method: human health, climate changes, ecosystem quality and resources consumption. The boundaries of the system under investigation include the processes of mechanical battery scrap processing, desulfurization and crystallization processes (PI), the melting processes to obtain crude lead and refining processes (PII and PIII). As the functional unit, there was accepted 1 Mg of the processed battery scrap. Particular attention was paid to the airborne emission, which adversely affect human health and climate change. The technology for which the tests were conducted offers the possibility to recover other elements, for example, secondary lead, polypropylene and sulfuric acid as crystalline sodium sulphate.
Twórcy
  • Motor Transport Institute Jagiellonska Street 80, 03-301 Warsaw, Poland tel. +48 22 4385282
Bibliografia
  • [1] Act of 24 April 2009 on batteries and accumulators (consolidated text, Journal of Laws No. 2016, No. 0, item 1803, 2016.
  • [2] Chłopek, Z., Lasocki, J., Comprehensive evaluation of the environmental hazard caused by the operation of automotive vehicles, The Archives of Automotive Engineering, 54(4), pp. 19-36, 2011.
  • [3] Guidelines for the Best Available Techniques (BAT) − Reference Document for the Non-Ferrous Metals Industries, pp. 514-596, 2017.
  • [4] Goedkoop, M., Spriensma, R., The Eco-indicator 99: A Damage Oriented Method for Life Cycle Assessment, Methodology Report, second edition. Pré Consultants, Amersfoort (NL), Netherlands, pp. 10-20, 2000.
  • [5] http://esu-services.ch/simapro/database/ [accessed 29.09.2017].
  • [6] International Lead and Zinc Study Group, World Refined Lead Supply and Usage 2010-2014, 9, 2015.
  • [7] Jolliet, O., Margni, M., Cherles, R., et al., IMPACT2002+: A New Life Cycle Impact Assessment Methodology, The International Journal Life Cycle Assessment, Vol. 8, pp. 325-330, 2003.
  • [8] Kowalski, Z., Kulczycka, J., Góralczyk, M., Ecological life cycle assessment of manufacturing processes (LCA), Scientific Publishing House, pp. 135, 2007.
  • [9] Meng, J., Impact of Macroeconomic Factors on Lead and Zinc. International Lead and Zinc Study Group (ILZSG), Portugal, pp. 11-12, 2017.
  • [10] PN-EN ISO 14040 Environmental regulation. Life Cycle assessment. Principles and structure, 2009.
  • [11] PN-EN ISO 14044 Environmental regulation. Life cycle Assessments. Requirements and guidelines, 2009.
  • [12] Regulation of the Minister of the Environment regarding the process of recycling and recovery of batteries of the 18 July 2017 on the specific requirements for the processing of the disused car lead-acid batteries, used lead-acid automotive accumulators, worn-out industrial lead-acid batteries or lead-acid batteries and installations for recycling lead and its compounds or recycling plastics, Journal of Laws 2017, item 1474, 2017.
  • [13] Spanos, C., Turney, D. E., Fthenakis, V., Life − cycle analysis of flow-assisted nickel − zinc, manganese dioxide, and valve − regulated lead − acid batteries designed for demand − charge reduction, Renewable and Sustainable Energy Reviews, Vol. 43, pp. 478-494, USA 2015.
  • [14] Sullivan, J. L., Gaines, L., Status of life cycle inventories for batteries, Energy Conversion and Management, Vol. 58, pp 134-148, Illinois 2012.
  • [15] Valero, A., and Valero, A., A Thermodynamic Approach for Accounting for Abiotic Resource Depletion, Journal of Industrial Ecology, Vol. 17, Issue 1, pp. 43-52, 2013.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bc669ef-c5c9-42a9-b2ad-be156923458d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.