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Abstract Two common channels through which humans communicate are speech and

gaze. Eye gaze is an important mode of communication: it allows people to

better understand each others’ intentions, desires, interests, and so on. The goal

of this research is to develop a framework for gaze-triggered events that can be

executed on a robot and mobile devices and allows experiments to be performed.

We experimentally evaluate the framework and techniques for extracting gaze

direction based on a robot-mounted camera or a mobile-device camera that

are implemented in the framework. We investigate the impact of light on the

accuracy of gaze estimation and also how the overall accuracy depends on user

eye and head movements. Our research shows that light intensity is important

and the placement of a light source is crucial. All of the robot-mounted gaze-

detection modules we tested were found to be similar with regard to their

accuracy. The framework we developed was tested in a human-robot interaction

experiment involving a job-interview scenario. The flexible structure of this

scenario allowed us to test different components of the framework in varied

real-world scenarios, which was very useful for progressing towards our long-

term research goal of designing intuitive gaze-based interfaces for human-robot

communication.
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1. Introduction

Social humanoid robots are becoming more and more commonplace. Their capabil-

ities are increasing rapidly: they are equipped with a variety of mechanisms that

enable them to perform human-like actions naturally and a variety of sensors to gain

information about the surrounding environment (including people). Some of these

robots are fully autonomous and are effectively replacing humans in many roles, such

as museum tour guides, personal companions, sales assistants, and so on. For such

robots, it is important to design human-robot interfaces that are intuitive for a hu-

man user. Two of the common channels through which humans communicate are

speech and gaze. In this research, our long-term goal is to design intuitive gaze-based

interfaces for human-robot communication.

Eye gaze is an important cue that allows people to better understand each oth-

ers’ intentions, desires, point of interest, and so on. Humanoid robots are often

equipped with one or more cameras that allow them to capture images of human

faces around them. These images can be analyzed with the help of computer vision

libraries and image-processing algorithms to estimate their gaze directions. Com-

putational resources on mobile humanoid robots are often constrained to minimize

power consumption, so the available cameras can only capture low-resolution images.

Special techniques and algorithms have been created to extract gaze direction from

high-resolution images, a survey of which can be found in [2]. Some of these techniques

can be adopted for low-resolution images.

The goal of this research is to experimentally evaluate the existing techniques

for extracting gaze direction based on a robot-mounted camera or a mobile-device

camera. We also propose a universal framework for robots and mobile devices for

gaze-triggered events.

In the next section, we provide a survey of the existing methods for estimating

gaze direction. In Section 3, we provide the details of the eye-gaze estimation tech-

niques tested in our experiments. Section 4 describes two evaluation experiments,

and our conclusions are presented in Section 5.

2. Brief survey of gaze-tracking techniques

Gaze tracking is used in many different fields such as cognitive science, psychology,

advertising, and medical research, and many techniques have been developed for it.

The most widely used current designs are video-based eye trackers [10]. Complex

techniques such as face-detection methods, iris-detection methods, and eye-tracking

methods are used in this and other related technologies. In this section, we first discuss

four different approaches to eye-gaze estimation; namely, eye tracking, face detection,

eye center localization, and face landmark detection. Then, we summarize methods

for gaze estimation and briefly mention gaze-tracking apps available on robots and

mobile devices.
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2.1. Eye-tracking approaches

Eye tracking is the process of measuring the motion of an eye relative to the head.

Usually, the integration of eye and head positions is used to compute gaze location in

a visual scene. Simple eye trackers only report gaze direction relative to the head or

for a fixed eyeball position.

Eye-tracking systems are divided into two categories: invasive and remote sys-

tems. Invasive systems require physical contact with the user: they are attached

to the body. Remote systems that measure the visual activity of a person without

any physical contact are called non-invasive systems. The techniques for eye tracking

range from simple direct observation through invasive mechanical methods to exam-

ining the difference of the electrical potentials between the two sides of an eyeball.

Below, we list four main techniques: Electro-oculography, Scleral search coils, Infrared

oculography, and Video-oculography [2]. In our research, we found the last method

most useful. This method, which is based on video eye tracking, is widely used in

commercial eye trackers [2, 8]. Until a few years ago, eye-gaze tracking had been

a very complex and expensive process and was limited to only laboratory research.

However, rapid technological advancements (increased processor speed and advanced

digital video processing) have lowered the cost and increased the accuracy of eye-gaze

trackers.

Video oculography may be invasive or non-invasive, and each category can be

further split into two other categories depending on whether visible or infrared

light is used. Non-invasive (remote) systems are especially useful for HCI and HRI

tasks. Most video-based eye trackers take advantage of infrared light, which produces

a glint on the cornea (corneal reflection). When the eye or the head moves, the pupil-

glint distance remains constant. The location of the glint not only changes when the

head moves but also when the gaze direction changes. One example of a system using

a single camera and a single source of infrared light is the LC Technologies tracker1.

Video-oculography makes use of single or multiple cameras to determine eye move-

ment using information obtained from the captured images. Due to the limited field

of view of one camera, the measurement may be lost when the angle between the

camera and the eye is too great. In such situations, multiple cameras are needed.

2.2. Eye center localization

A comparison of eight state-of-the-art algorithms for pupil detection, tested on low-

resolution eye images recorded in remote tracking scenarios can be found [4]. The

evaluation was performed on three data sets containing images with varying illumina-

tion along with different camera distances, occlusions, head movements, and off-axial

camera positions. The compared algorithms included those for head-mounted as well

as remote eye-trackers. Algorithms for head-mounted eye-trackers usually work with

good quality images of the eye region, as the camera zooms directly on the user’s

1LC Technologies website https://www.eyegaze.com (Accessed: 13.06.2019)
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eyes. On the other hand, algorithms for remote eye-trackers are designed to work on

low-quality images, as the cameras are situated at some distance from the user and

the eye region needs to be extracted. Additionally, algorithms for remote eye-trackers

need to deal with off-axis camera positions or partly visible eyes. From the perspec-

tive of our research, three algorithms for remote eye-tracking are of special interest:

one proposed by George and Routray, another proposed by Droege and Paulus, and

a third by Timm and Barth [3, 7, 13]. Among these three algorithms, the approach

by Timm and Barth achieved the best results, achieving stable detection rates on all

three data sets [4].

Surprisingly, the ElSe algorithm (which was designed for head-mounted systems)

outperformed all of the others on the pupil-detection task on a remote eye-tracker data

set [5]. ElSe provides two algorithms to estimate the pupil center. The first algorithm

uses a Canny filtered image and morphological operations to detect the pupil-related

edges. It selects the best edge by various heuristics, like the shape and intensity of

the surrounding region. This edge is used to carry out ellipse fitting, which yields the

pupil center and contour. In case the first algorithm is not successful, an advanced

blob-detection algorithm is applied to find the pupil center.

Timm and Barth’s algorithm takes advantage of the direction of the pixel gra-

dients as a feature to compute the pupil center [13]. This approach is based on the

idea that the direction of vector from the pupil center to any pupil or iris contour

point is equal to the direction of gradient at the pupil or iris contour point only if

center point is actually center of the iris (see Fig. 1). The center of the pupil is com-

puted as follows: for each pixel in the input image, the algorithm accumulates the

square product of the normalized displacement vector of the pupil-center candidate

to the gradient pixel and normalized pixel gradient vector, running over the entire

gradient image. The accumulated sum is multiplied by the inverted intensity of the

pupil-center candidate. The pupil-center candidate having the highest accumulated

sum is selected as the pupil center. We use this algorithm in our research to detect

pupil centers.

Figure 1. Grey circle represents iris, and light background – sclera. Left: orientation of

displacement vector di and gradient vector gi differs; right: they are equal
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Roberto Valenti and Theo Gevers proposed another approach using Isophotes,

which are contours visible in the image [14]. This method requires a contrast between

objects. The limited part of the image containing the circle at which we are looking

is extracted. Next, new coordinates are set such that each pixel points towards the

highest intensity drop (like the gradient). Finally, we come to the following equation

(Equation (1)).

D(x, y) =
{Lx, Ly}(L2

x + L2
y)

L2
yLxx − 2LxLxyLy + L2

xLyy
(1)

Here, Lx, Ly are the first derivatives of the brightness functions, and D(x, y) is the

vector pointing towards the estimated center. Many such vectors are calculated; their

intersection is the pupil center.

2.3. Face landmark detection

Kazemi, Vahid, and Sullivan Josephine [9] proposed a method to quickly locate 68 face

landmarks (see Fig. 2).

Figure 2. 68 face landmarks [11]

This method is based on a cascade of the regression function. Pixel indexing

is also used in terms of their brightness in relation to the currently predicted shape.

Individual regressors are trained by the gradient-boosting method and then combined

into larger cascades.

Another method that realizes the same functionality has been proposed by

T. Baltrusaitis, P. Robinson, and L.-P. Morency [1]. It uses Constrained Local
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Neural Field (CLNF), which is an evolution of Constrained Local Models (CLM).

The method consists of preparing a separate model for each point sought; then, each

pixel in a given area of interest is evaluated to see if it is the point sought.

In the last phase, the pixel with the best value is chosen. This approach can be

implemented in a classical way using the random forest method. The authors of the

article, however, use Non-Uniform Regularised Landmark Mean-Shift (NU-RLMS),

which yields a more reliable result.

2.4. Techniques for gaze estimation

Gaze-tracking approaches can be split into two categories [2]:

Feature-based methods use extracted local features, such as contours (limbus

and pupil contour), eye corners, and cornea reflections from an eye image. The goal

of these methods is to find informative local features of the eye that are less sensitive

to variations in viewpoint and illumination. When accurate iris and pupil features

are not available, the performance of these methods degrades.

Their performance is also affected when working outdoors or under strong ambi-

ent light.

Feature-based approaches can be classified into two categories: model-based (ge-

ometric) and interpolation-based (regression-based) approaches [2]:

Model-based approaches take advantage of an explicit geometric model of the eye

to compute a 3D gaze direction vector. Because these 3D model-based techniques rely

on metric information, they require camera calibration and a global geometric model

of the light sources as well as the camera and monitor positions and orientations. The

vast majority of model-based methods consist of the following steps:

• First, the optical axis of the eye is reconstructed in 3D. This is achieved by

estimating the cornea and pupil centers.

• Second, the visual axis is reconstructed.

• Finally, the visual axis is intersected with the scene geometry to obtain the point

of gaze.

For 3D model-based methods, gaze direction is estimated as a vector from the eyeball

center to the iris center.

Interpolation-based approaches assume that the image features can be mapped

to the gaze coordinates using a parametric (e.g., polynomial) or non-parametric form

(e.g., neural networks). These techniques represent point of gaze as a generic func-

tion of the image features instead of explicitly modeling the geometry of the human

eye. To calculate the unknown coefficients of the mapping function, calibration data

is used for numerical fitting with multiple linear regression or some other similar

method. Neural network-based approaches (which are an alternatives to parametric

expressions) assume a non-parametric form to compute a mapping from the image

features to the gaze coordinates. In these approaches, the coordinates of certain facial

points are extracted and sent through a trained neural network. The coordinates of

the point of gaze are obtained as the output.
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Appearance-based methodsuse the image content to estimate gaze direction by

mapping the data to screen coordinates. These methods do not usually require the cal-

ibration of cameras or geometry data because the mapping is made directly on the

image contents. For example, Wood et al. used this method to estimate gaze direc-

tion [15]. They compared their solution to the geometric solution proposed by Wood

and Bulling and found the two to be comparable [16]. In this method, a ray is car-

ried from the center of the eye (through the pupil) to the camera. This method is

also used to determine facial landmarks in both 2D and 3D. The models have been

trained on a synthetic data set that allows one to control the eye position, head posi-

tion, and lighting; they were able to recognize 28 characteristic points in the eye area.

2.5. Gaze-tracking apps on robot and mobile devices

Eye Gaze is an Android app available from the Google Play Store; this allows a user

to stabilize camera shakes (for small displacements) and track gaze direction after

detecting the user’s facial features. The authors do not say much about the algorithms

used in this work – they only mention that they are using OpenCV. OpenCV can also

be used to detect faces and facial features (such as the eyes) in the newer version for

detecting the landmarks on a face (as discussed in Section 2.3).

In order for this system to work, the user must face the device. Furthermore,

eyeglasses or the presence of any extraneous element degrades the app’s performance.

The best results are obtained under medium illumination: too much or too little

illumination affects the system’s performance. Eye extremity is the most prominent

feature affecting the accuracy of gaze detection. There have been many attempts to

obtain the best results and document them with a screen-shot, but the best picture

is presented in Figure 3.

Figure 3. Eye Gaze App – action example
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As can be seen in this screenshot, the gaze indicators are quite random. The

main advantage of this system is that the indicator beginnings are always exactly in

the middle of the eye. A major disadvantage is that, if there is too much or too little

lighting (or if the user moves away from the camera), the indicators begin to move in

increasingly random directions.

There are also other applications like EyeTab, which performs gaze tracking on

mobile devices; however, they are usually fine-tuned for specific devices and do not

work properly with others [16]. EyeTab is based on Timm and Barth’s algorithm

as well as the isophotoes algorithm for accurately finding the pupil (as described

in Section 2.2). An ellipse is then fitted into the pupil, and the normal vector is

calculated; at this point, the vector can be transformed into gaze angle.

There are many articles describing the approaches to gaze tracking for a robot,

but most of them do not provide any working samples that can be evaluated [7, 8,

17, 18]. Some commercial solutions are available, but they are based on commercial

eye trackers like Tobii or Pupil Labs. One available solution is for the Pepper robot2,

which is used as a reference point in this study.

3. Framework for gaze-triggered events

We would like to use gaze tracking in human-robot interactions and perform experi-

ments on mobile and robot platforms. Therefore, we have designed and implemented

a universal framework for gaze-triggered events. Figure 4 shows its high-level archi-

tecture; it can be executed on a Pepper robot and mobile devices using the Android

system. The architecture includes both modules available on the Pepper robot as well

as those that have been developed by others. The modules are described below.

Pepper video source: uses robot’s ALVideoDevice module to retrieve images from

robot’s camera.

Robot Gaze: uses robot’s ALGazeAnalysis module to fetch gaze-related data.

Webcam video source: uses OpenCV functionality to retrieve images from laptop

webcam.

Android video source: uses OpenCV functionality to retrieve images from Android

device camera.

Custom Gaze: has the following functions:

• uses VideoSource to retrieve images from either robot’s or laptop’s camera;

• uses self-developed gaze direction-estimating solution to obtain gaze-related

data;

• takes advantage of OpenCV and dlib library functionality.

2Pepper robot – https://www.softbankrobotics.com/emea/en/pepper.

https://www.softbankrobotics.com/emea/en/pepper
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OpenFace solution: performs the following functions:

• uses VideoSource to retrieve images from either robot’s or laptop’s camera;

• uses OpenFace gaze direction-estimating solution to obtain gaze-related

data;

• takes advantage of OpenFace and OpenCV library functionality.

Android solution: carries out the following functions:

• uses Android video source to retrieve images from Android device’s camera;

• uses self-developed gaze direction-estimating solution to obtain gaze-related

data;

• takes advantage of OpenCV and dlib library functionality.

Analyzer: makes use of Gaze component functionality to fetch gaze-related data.

Android

Pepper

Analyzer

Gaze
<<service>>

Robot gaze Custom gaze

Video source

Pepper video
source

Webcam
video source

OpenFace
solution

Android
solution

Android video
source

Figure 4. Architecture diagram of system

To determine gaze direction, there are many approaches that can be used on

a mobile platform (such as the Pepper robot or on an Android device). However,

most of these approaches are based on the same general Algorithm 1 shown below.
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Algorithm 1 Gaze direction-estimation algorithm

procedure getGazeDirection(image)

grayImg ← convertToGrayscale(image)

faces← detectFaces(grayImg)

faceLandmarks← detectFaceLandmarks(faces)

eyeRegions← detectEyeRegions(faceLandmarks)

headPose← computeHeadPose(faceLandmarks)

for each eyeRegion ∈ eyeRegions do

pupilCenter ← findPupilCenter(eyeRegion)

gaze← calculateGaze(pupilCenter, faceLandmarks)

eyeGazeDirection← transformToAngles(gaze + headPose) . gaze vector

needs to be combined with headPose to get vector in camera coordinates

gazeDirection← combine(eyeGazeDirection) . e.g., Averaged

return gazeDirection

3.1. Gaze detection on Pepper robot

Working with the Pepper robot imposes some restrictions on using commonly avail-

able libraries as well as on the image resolution and frame rate; for example, when

working remotely, the resolution is 1280x960 pixels with one frame per second (FPS)

or 640*480 pixels with up to 30 FPS. Because of this restriction, we chose to work

with VGA resolution. A better resolution can be obtained when working directly

on the robot; however, installation of any library is problematic and can disable the

Pepper software. For this reason, we chose to use remote operation.

We explored a few solutions to gaze tracking, but many of them did not pass

the early test phase. For example, the solution using ellipse fitting in the sclera was

rejected due to the unstable results: in about half of the trials with facial images, it

failed to find the eyes. Finally, we selected the two solutions described below.

OpenFace-based solution: This uses the general algorithm (see Algorithm 1)

with some adjustments. The OpenFace library provides almost all of the needed

functions, such as head-pose estimation, landmark detection, gaze estimation, and so

on [1, 15]. OpenFace is written in C++. As a part of this work, Python bindings

were created. Also, many possible methods for transforming the gaze vectors to

gaze angles were investigated during the tests; the most suitable method was chosen

(Equations (2) and (3)).

x angle = atan2(gazeV ectos[x],−gazeV ector[y]) (2)

y angle = asin(cos(−gazeV ectos[y]/
√
gazeV ectos[x]2 + gazeV ector[z]2) (3)

A key difference with the general algorithm is that the pupil detection is integrated

in the landmark detection. OpenFace returns landmarks in 2D and 3D, which makes

it much easier to calculate the head pose and gaze direction.

CustomGaze: It also follows the general algorithm (see Algorithm 1) with some

adjustments. The algorithm for gaze-direction estimation is based on the Eye-gaze
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application3. The pupil center is detected with the Timm algorithm [13] described

in Section 2.2. The eye-gaze direction vector is computed separately for each eye

by taking the difference between the pupil center (as detected by Timm’s algorithm)

and the eye center. The eye center is computed as the middle point between the

outermost and innermost eye-related facial landmarks. The head pose-estimation

algorithm employed in this work uses the facial model, which takes advantage of the

locations of the eyes, the nose, and the mouth features [6]. These features are not

much influenced by facial expressions and vary little across users in comparison to

other features (like hairlines or facial contours) [12]. The face model is composed

of three distances: Lf , Ln, and Lm, which represent the eye/mouth, nose/mouth,

and nose base/nose tip distances, respectively. In this model, the face is assumed to

be a plane passing through the locations of the eyes and the mouth features. The

facial normal is found by joining the nose base to the nose tip. The symmetry axis

for the face is found by joining the midpoint between the eyes to the mouth center. In

the camera-centered coordinates, facial normal vector n (which determines the head

position) is computed as follows:

n = [sin(σ)cos(τ),−sin(σ)sin(τ),−cos(σ)] (4)

The σ angle is called slant, which is the angle that the facial normal makes with

vector d normal to the image plane. The θ and τ angles can be extracted from a 2D

image. The comprehensive derivation of Formula 4 and supporting theory can be

found in [6]. The locations of the eyes, the nose, and the mouth features as well

as the distances between each pairing are easily computed from the face landmarks

found beforehand. The eye-gaze directions for each eye and the head-pose vector are

combined to compute the gaze direction using the following formula:

gaze vec left = 13.101 ∗ left eye width
14.0

∗ head pose vec ∗ left eye gaze vec (5)

gaze vec right = 13.101∗right eye width
14.0

∗head pose vec∗3∗right eye gaze vec (6)

As a reference solution, Pepper-provided libraries were chosen. Unfortunately,

the Pepper library’s internal work is undocumented; through the tests, however, we

found that it uses an infra-red depth sensor along with visible light camera to calculate

the head pose.

3.2. Gaze detection on an Android

Gaze detection on an Android platform is performed using two modules in parallel.

One module is responsible for facial landmark detection, and the other one performs

the gaze estimation. The gaze angles are estimated based on the eye-corner positions

obtained by the first module and the iris position calculated by the gaze-estimation

3Eye-gaze application repository – https://github.com/iitmcvg/eye-gaze.

https://github.com/iitmcvg/eye-gaze
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module. Head-pose estimation was irrelevant; it is assumed that the user is facing

the camera or the phone screen directly. Gaze angles are calculated accordingly using

the following equations (Equations (7) and (8)):

ESF = irisToLeft/eyeWidth

horizontalAngle = −(MSA ∗ EEF ) + (WA ∗ EEF ∗ ESF )
(7)

EHF = irisToBottom/eyeHeight

verticalAngle = −(MVA ∗ EEF ) + (WA ∗ EEF ∗ EHF )
(8)

where:
irisToLeft: distance from left-eye corner to iris,

eyeWidth: distance between eye corners,

MSA: max side angle; equal to 90,

EEF : eye edge factor; constant chosen experimentally equal to 0.77,

WA: whole angle; equal to 180,

MVA: max vertical angle; equal to 90,

irisToBottom: distance from bottom of eye to iris,

eyeHeight: distance between bottom and top of eye.
These calculations are made for each eye and then combined to yield the final gaze

angle.

4. Evaluation experiments

In this section, we describe two experiments to evaluate three systems: RobotGaze,

OpenFace, and CustomGaze. The first experiment was designed to evaluate the influ-

ence of room lighting on the correctness of the gaze estimates. The second experiment

was aimed at evaluating the accuracy of the real-world solutions. We first present

the experimental setting, followed by the experimental procedure; we then present the

results and discussion.

4.1. Experimental setting

The test environment consisted of the following components (Fig. 5):

• Pepper robot was placed in front of interlocutor,

• interlocutor interacting with Pepper robot sat in front of it,

• notebook computer on which system was running to control robot,

• direction markers were placed behind robot,

• experiments were performed in room with good lighting conditions,

• robot interacted with one person only,

• distance between interlocutor and robot was between 100 cm and 120 cm,

• interlocutor’s head was positioned on same level as robot’s head (where cam-

era was).
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Figure 5. Test environment – robot and direction markers

The central direction marker was located at the level of the robot’s head. The dis-

tance between the direction markers was 65 cm horizontally and vertically. In this

configuration (when the interlocutor looks at the direction markers on the sides, on

the top, or on the bottom), the yaw and pitch angles are approximately 20 degrees

each. The gaze regions were indicated by the direction markers.

4.2. Experiment 1: Studying effect of luminosity

The system was started in a debug-like mode; the following lighting configurations

were tested:

• Full L.: Full lighting (about 1010 lux) available in room.

• Half L.: Half lighting (about 350 lux) available in room.

• No L.: (about 1 lux) without lighting.

• Extra L. F.: Additional lighting (about 230 lux) located in front of interlocutor

(15 cm below camera).

• Extra L. LS.: Additional lighting (about 230 lux) located on left side of inter-

locutor (at his head height).
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During the test, the interlocutor was moving both the head and the eyes to focus

on the direction markers. The experiment was repeated ten times; all of the shown

values are the averages of their results.

Table 1 shows the percentage of correctly fitted areas of interest during each stage

of the experiment. RobotGaze is the reference solution using the software available

on the robot. The second item in the list is a solution based on the OpenFace library.

Table 1
Results and discussion

Full L.

[%]

Half L.

[%]

No L.

[%]

Extra L. F.

[%]

Extra L. LS.

[%]

RobotGaze 66 66 60 55 75

OpenFace solution 68 25 0 60 60

CustomGaze 55 55 27 66 66

The best results for RobotGaze were obtained for Extra L. LS. This is likely

due to the better illumination of the eyes as compared to being lit from above (when

there is a shadow on the eye cast by the eyebrow). Confirming this hypothesis requires

further research. The lack of a similar result in Extra L. F. is most likely caused by

the user getting dazzled with the light and not being able to look in a given direction

(or squinting involuntarily). Another possible reason may be due to pupil contraction

when exposed to light. In Full L., there was a problem with matching the lower three

vertical areas, though the horizontal alignment was correct. In conditions Half L.

and No L. performance of the system is still good. However, reducing the amount of

light significantly hinders finding the face in the image which is necessary to start the

experiment.

The best results for CustomGaze were obtained in Extra L. F. and Extra L. LS.

This is likely due to the better illumination of the eye. It can be observed that,

without lighting, CustomGaze was only occasionally able to classify gaze direction

correctly, and only when the user focused on the middle-row markers.

The best results for the OpenFace solution were obtained in Full L. In Half L.

and No L., the system performed poorly due to the deteriorating lighting conditions.

In No L., the zero accuracy was caused by a lack of face detection during the experi-

ment (which gave an incorrect fit). Extra L. F. and Extra L. LS. gave slightly worse

results as compared to Full L. Extra L. LS. gave a similar result to Extra L. F., but

the face was not detected in any case.

The results for Full L. were similar in all versions of the system; however, Half L.

and No L. gave significantly worse results when using the OpenFace and CustomGaze

solutions. The reason for this considerably poor performance when compared to

RobotGaze is likely because RobotGaze uses depth maps in addition to the camera

image.
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Under the external lighting condition, there were different reasons as to why

OpenFace performed worse than CustomGaze: the experiments were performed on

different days, one of which was rainy and cloudy, and the other was sunny. We were

able to block most of the light from the outside (but not all of it). In Extra L. F.

and Extra L. LS., we did not observe any significant improvement in the result for

the system using OpenFace when compared to what happened in the other tested

solutions (CustomGaze and RobotGaze).

A probable cause is that the lighting makes it difficult to detect the face when

one side is illuminated but the other is in a shadow. This confirms the hypothesis that

the system using the functions offered by the robot software does not only use the

camera image. The CustomGaze solution in Extra L. F. and Extra L. LS. performed

better than in Full L.

Illumination measurements for the Android solution were carried out under four

conditions: normal, light, dark, and very dark. As in the next experiment, the time

measurement was performed 15 times for each condition. The measurement was taken

from the start of the video frame to when eye contact was made. All of the individual

measurements are included in the chart in Figure 6.
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Figure 6. Influence of lighting comparison
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The combined results from measuring the influence of light on the speed and

accuracy of detection are presented in Table 2.

Table 2
Android influence of lighting – times

Normal [ms] Light [ms] Dark [ms] Very dark [ms]

Average 712 669 899 960

Standard deviation 49 35 54 62

As expected, the best results were achieved in a well-lit place and the worst in

a very dark room. The lowest standard deviation was recorded for a very bright case.

In other cases, the deviation was comparable. Significant differences in the accuracy

of detection were not observed outside a very dark room, where the accuracy was

sometimes very poor.

4.3. Experiment 2: Accuracy of tested solutions

In this experiment, the system was started in the debug mode, where the robot

measures only the interlocutor’s gaze direction. Every three seconds, the robot records

the direction (one out of nine regions) in which the interlocutor has been gazing for the

last three seconds. The interlocutor’s gaze was fixed within the same analysis window

but changed between subsequent windows. The interlocutor was asked to focus his

or her gaze on the direction markers placed behind the robot. Each test included

focusing the gaze on each direction marker. The system was configured to estimate

the gaze direction every 500 milliseconds; so, within a three-second window, there

were six measurements. The system used yaw and pitch angles to classify the gaze

into one of nine regions. The final gaze direction region is the most frequently detected

region within the analysis window.

The system classified gaze as horizontal middle if the yaw angle fell within a range

of ±15 degrees (as shown in Table 3). If the yaw angle exceeded ±15 degrees, the gaze

was classified as right or left, respectively. Similarly, the gaze was categorized as ver-

tical middle if the pitch angle fell within a range of ±15 degrees. If the pitch angle was

outside the ±15-degree range, the gaze was classified as up or down, correspondingly.

Table 3
Area of interest division

horizontal 90◦ − 15◦

vertical 90◦ − 15◦
horizontal 15◦ − (−15◦)

vertical 90◦ − 15◦
horizontal −15◦− (−90◦)

vertical 90◦ − 15◦

horizontal 90◦ − 15◦

vertical 15◦ − (−15◦)

horizontal 15◦ − (−15◦)

vertical 15◦ − (−15◦)

horizontal −15◦− (−90◦)

vertical 15◦ − (−15◦)

horizontal 90◦ − 15◦

vertical −15◦ − (−90◦)

horizontal 15◦ − (−15◦)

vertical −15◦ − (−90◦)

horizontal −15◦− (−90◦)

vertical −15◦ − (−90◦)



Detecting gaze direction using robot-mounted and mobile-device cameras 469

The goal of the test was to evaluate the accuracy of the algorithms for gaze

estimation while the interlocutor made head and eye movements. The interlocutor

could fix his or her gaze on a direction marker using any of the following three ways:

• moving both head and eyeballs (head + eyes);

• moving only eyeballs but not head (eyes);

• moving head only with eyeballs fixed on robot camera (on its head)4.

The results of this experiment (averaged over all of the participants) are presented

in Table 4.

Table 4
Accuracy of classifying gaze into one of nine gaze regions depending on head and

eye movements

Solution name Head + eyes [%] Eyes [%] Head [%]

RobotGaze 66 22 55

OpenFace 68 22 60

CustomGaze 55 33 49

As seen in Table 4, the best results were obtained when using both the eyes and

the head to look at a marker. Each tested solution achieved a higher accuracy when

the gaze was focused on a direction marker by moving both the head and the eyes

rather moving the eyes alone. In all of these cases, the classifications were mostly

accurate when the interlocutor was focusing his or her gaze on a direction marker

from the upper or middle rows. Moving only the eyes often resulted in the gaze

being classified as if the interlocutor were looking at the robot. The only exceptions

were some sporadic correct classifications when the interlocutor focused on a direction

marker from the middle or upper rows.

We also found that accurate gaze estimation results mostly depend on the esti-

mation of head orientation; only about one third of the results depend on eye-gaze

estimation 4. An analysis of the yaw and pitch angles shows that, despite an incor-

rect classification of gaze into the gaze regions, the algorithms were able to compute

the correct yaw and pitch angles (which differed in the different gaze regions). This

suggests that, by manipulating the thresholds for determining the classification into

particular regions, the system would be able to correctly classify the gaze direction.

The Android solution was also tested to determine its gaze-detection accu-

racy. The values returned by the application were compared with the ground truth.

The tests were carried out first for the horizontal axis and then for the vertical

axis. The tests started at −60 degrees, moving in increments of 15 degrees until

reaching 60 degrees, thereby giving a set of 9 measurements. The gaze measurement

results are presented in Table 5.

4In this case, if the eye is fixed on the robot camera, merely moving the head should not change
the detected gaze direction.
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Table 5
Android calculated angles corresponded to real angles

Horizontal angles Vertical angles

Expected Calculated Difference Expected Calculated Difference

−60 −71 11 −60 −88 28

−45 −42 3 −45 −33 12

−30 −22 8 −30 −23 7

−15 −9 6 −15 12 27

0 1 1 0 −3 3

15 −4 19 15 6 9

30 25 5 30 28 2

45 58 13 45 28 17

60 83 23 60 41 19

Average 10 Average 14

StDev 7 StDev 9

The accuracy of the horizontal measurements is slightly better: both the average

error and deviation are smaller. Figure 7 presents the results in a graph; from this,

it can be seen that, the more a person looks sideways horizontally or up-and-down

vertically, the greater is the error.
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The least error occurs when a person looks straight ahead. After 30 attempts,

very accurate results were recorded in about 40% of the cases, satisfactory results in

about 30% of the cases, and incorrect values in 30% of the cases.

4.4. Experiment 3: Human-robot interaction in job interview scenario

The goal of this experiment was to field test the developed framework for gaze-

triggered events in a real-world human-robot interaction. We used a job interview

scenario to evaluate the performance of the system behavior as a proof of concept

of our platform. During the tests, the system was estimating gaze direction, taking

advantage of the RobotGaze, CustomGaze, and OpenFace solution modules.

The system executed a job interview scenario provided in the JSON format. All of

the steps of the scenario were correctly performed by the robot, and the performance

of all tested solutions were in agreement with the results obtained in the previous

experiment. The robot asked a question in each step of the scenario and waited for

a specified amount of time for the interlocutor’s response. The actions performed by

the robot were dependent on the interlocutor’s gaze (which was analyzed during the

response time). In this scenario, the robot was only speaking in the response (there

was no gestures). In the future, we plan to enhance the quality of the human-robot

interaction by incorporating other types of actions such as gesturing and posturing

by moving parts of the robot’s body.

5. Conclusions

In this research, we analyzed various approaches for estimating gaze direction to de-

termine which algorithms are suitable for implementation. Next, gaze-based systems

that facilitate human-robot interaction were designed and developed for the Pepper

robot and an Android device. These systems incorporate the OpenFace solution and

the ALGazeAnalysis module (which is available on the Pepper robot) together with

algorithms developed by us.

A series of experiments were performed to measure the system’s performance.

The gaze-estimating solutions were evaluated under different lighting conditions and

with different combinations of head and eye movements. The results of the experi-

ments show that the tested systems achieve a comparable accuracy. It was observed

that head movements provide a more informative cue to deduce gaze direction than

eye movements do. We also found that providing additional light sources at the sides

of the interlocutor can significantly improve the vertical gaze estimation.

Due to the high cost of commercial gaze-tracking solutions, a few open-source

software-based gaze trackers have been developed that do not need any special hard-

ware and make use of off-the-shelf equipment. However, the accuracy of these

software-based gaze trackers is not as good as the commercial gaze trackers. More re-

search needs to be done on these open-source gaze trackers to improve their accuracy

and stability.
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