PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heat and mass transfer flow of nanofluids in presence of chemical reaction with partial slip conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A mathematical model is presented for analyzing the convective fluid over a stretching surface in the presence of nanoparticles. The analysis of heat and mass transfer of converted fluid with slip boundary condition is investigated. To convert the governing Partial Differential Equations (PDEs) into a system of nonlinear Ordinary Differential Equations (ODEs) we use similarity transformations. The shooting method is used to solve the system of ODEs numerically, and obtained numerical results are compared with the published results and found that both are in excellent agreement. The numerical values obtained for the velocity, temperature and concentration profiles are presented through graphs and tables. A discussion on the effects of various physical parameters and heat transfer characteristics is also included.
Rocznik
Strony
71--84
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Department of Humanities and Sciences (Mathematics), CVR College of Engineering, Hyderabad Telangana State, India
autor
  • Department of Mathematics, GITAM University, Hyderabad, Telangana State, India
  • Department of Humanities and Sciences (Mathematics), CVR College of Engineering, Hyderabad Telangana State, India
Bibliografia
  • [1] Choi, S.U.S. (1995). Enhancing thermal conductivity of fluids with nanoparticles. ASMEPublications-Fed, 231, 99-106.
  • [2] Eastman, J.A., Phillpot, S.R., Choi, S.U.S., & Keblinski, P. (2004). Thermal transport in nanofluids. Annual Review of Materials Research, 34, 219-246.
  • [3] Buongiorno, J. (2006). Convective transport in nanofluids. Journal of Heat Transfer, 128(3), 240-250.
  • [4] Kuznetsov, A.V., & Nield, D.A. (2010). Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 49(2), 243-247.
  • [5] Kuznetsov, A.V., & Nield, D.A. (2014). Natural convective boundary-layer flow of a nanofluid past a vertical plate: A revised model. International Journal of Thermal Sciences, 77, 126-129.
  • [6] Ramesh, G.K., & Gireesha, B.J. (2014). Influence of heat source/sink on a Maxwell fluid over a stretching surface with convective boundary condition in the presence of nanoparticles. Ain Shams Engineering Journal, 5(3), 991-998.
  • [7] Sahoo, B., & Do, Y. (2010). Effects of slip on sheet-driven flow and heat transfer of a thirdgrade fluid past a stretching sheet. International Communications in Heat and Mass Transfer, 37, 1064-1071.
  • [8] Mania Goyal & Rama Bhar gava (2013). Numerical Solution of MHD Viscoelastic Nanofluid Flow over a Stretching Sheet with Partial Slip and Heat Source/Sink. Hindawi Publishing Corporation, ISRN Nanotechnology, 2013, Article ID 931021, 11 pages.
  • [9] Reddy Gorla, R.S., & Sidawi, I. (1994). Free convection on a vertical stretching surface with suction and blowing. Applied Scientific Research, 52(3), 247-257.
  • [10] Khan, W.A., & Pop, I. (2010). Boundary-layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, 53, 2477-2483.
  • [11] Wang, C.Y. (2009). Analysis of viscous flow due to a stretching sheet with surface slip and suction. Nonlinear Analysis: Real World Applications, 10(1), 375-380.
  • [12] Bhattacharyya, K., Mukhopadhyay, S., & Layek, G.C. (2011). Steady boundary layer slip flow and heat transfer over a flat porous plate embedded in a porous media. Journal of Petroleum Science and Engineering, 78(2), 304-309.
  • [13] Das, K. (2012). Slip effects on heat and mass transfer in MHD micropolar fluid flow over an inclined plate with thermal radiation and chemical reaction. International Journal for Numerical Methods in Fluids, 70(1), 96-113.
  • [14] Zheng, L., Niu, J, Zhang, X., & Gao, Y. (2012). MHD flow and heat transfer over a porous shrinking surface with velocity slip and temperature jump. Mathematical and Computer Modelling, 56(5), 133-144.
  • [15] Sharma, R., Ishak, A., & Pop, I. (2013). Partial slip flow and heat transfer over a stretching sheet in a nanofluid. Mathematical Problems in Engineering, 2013.
  • [16] Abbas, N., Awan, M.B., Amer, M., Ammar, S.M., Sajjad, U., Ali, H.M., Zahra, N., Hussain, M., Badshah, M.A., & Jafry, A.T. (2019). Applications of nanofluids in photovoltaic thermal systems: A review of recent advances. Physica A: Statistical Mechanics and its Applications, 536, 122513.
  • [17] Javed, S., Ali, H.M., Babar, H., Khan, M.S., Janjua, M.M., & Bashir, M.A. (2020). Internal convective heat transfer of nanofluids in different flow regimes: A comprehensive review. Physica A: Statistical Mechanics and its Applications, 538, 122783.
  • [18] Ahmadlouydarab, M., Ebadolahzadeh, M., & Ali, H.M. (2020). Effects of utilizing nanofluid as working fluid in a lab-scale designed FPSC to improve thermal absorption and efficiency. Physica A: Statistical Mechanics and its Applications, 540, 123109.
  • [19] Babar, H., & Ali, H.M. (2019). Airfoil shaped pin-fin heat sink: Potential evaluation of ferric oxide and titania nanofluids. Energy Conversion and Management, 202, 112194.
  • [20] Kilica, M., & Ali, H.M. (2019). Numerical investigation of combined effect of nanofluids and multiple impinging jets on heat transfer. Thermal Science, 23(5), 3165-3173.
  • [21] Khan, A., & Ali, H.M. (2019). A comprehensive review – pool boiling using nanofluids. Thermal Science, 23(5), 3209-3237.
  • [22] Riedler, J., & Schneider, W. (1983). Viscous flow in corner regions with a moving wall and leakage of fluid. Acta Mechanica, 48, 95-102.
  • [23] Romano, F., & Kuhlmann, H.C. (2017). Particle-boundary interaction in a shear-driven cavity flow. Theoretical and Computational Fluid Dynamics, 31, 427-445.
  • [24] Aminreza, N., Pourrajab, R., & Ghalambaz, M. (2012). Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. International Journal of Thermal Sciences, 54, 253-261.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bbc8348-3653-4642-845d-f8b03623350e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.