PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of blast-induced ground vibration using gene expression programming (GEP), artificial neural networks (ANNS), and linear multivariate regression (LMR)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an attempt was made to find out two empirical relationships incorporating linear mul-tivariate regression (LMR) and gene expression programming (GEP) for predicting the blast-induced ground vibration (BIGV) at the Sarcheshmeh copper mine in south of Iran. For this purpose, five types of effective parameters in the blasting operation including the distance from the blasting block, the burden, the spacing, the specific charge, and the charge per delay were considered as the input data while the output parameter was the BIGV. The correlation coefficient and root mean squared error for the LMR were 0.70 and 3.18 respectively, while the values for the GEP were 0.91 and 2.67 respectively. Also, for evaluating the validation of these two methods, a feed-forward artificial neural network (ANN) with a 5-20-1 structure has been used for predicting the BIGV. Comparisons of these parameters revealed that both methods successfully suggested two empirical relationships for predicting the BIGV in the case study. However, the GEP was found to be more reliable and more reasonable.
Rocznik
Strony
317--335
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
  • Department of Mining Engineering, Hamedan University of Technology, Hamedan, Iran
  • Department of Mining Engineering, Hamedan University of Technology, Hamedan, Iran
  • Department of Mining Engineering, Hamedan University of Technology, Hamedan, Iran
Bibliografia
  • [1] M. Khandelwal, T.N. Singh, Prediction of blast induced ground vibrations and frequency in opencast mine: a neural network approach. Journal of Sound and Vibration 289 (4-5), 711-725 (2006).
  • [2] R.S. Faradonbeh, D.J. Armaghani, M.A. Majid, M.M. Tahir, B.R. Murlidhar, M. Monjezi, H.M. Wong, Prediction of ground vibration due to quarry blasting based on gene expression programming: a new model for peak particle velocity prediction. International Journal of Environmental Science and Technology13 (6), 1453-1464 (2016).
  • [3] M. Monjezi, M. Ghafurikalajahi, A. Bahrami, Prediction of blast-induced ground vibration using artificial neural networks. Tunnelling and Underground Space Technology 26 (1), 46-50 (2011).
  • [4] S.R. Dindarloo. Prediction of blast-induced ground vibrations via genetic programming. International Journal of Mining Science and Technology 25 (6), 1011-1015 (2015).
  • [5] M. Hajihassani, D.J. Armaghani, M. Monjezi, E.T. Mohamad, A. Marto, Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach. Environmental Earth Sciences 74 (4), 2799-2817 (2015).
  • [6] D.J. Armaghani, E. Momeni, SVANK. Abad, M. Khandelwal, Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting. Environmental Earth Sciences 74 (4), 2845-2860 (2015).
  • [7] M. Hasanipanah, S.B. Golzar, I.A. Larki, M.Y. Maryaki, T. Ghahremanians, Estimation of blast-induced ground vibration through a soft computing framework. Engineering with Computers 33 (4), 951-959 (2017).
  • [8] R.S. Faradonbeh, M. Monjezi, Prediction and minimization of blast-induced ground vibration using two robust meta-heuristic algorithms. Engineering with Computers 33 (4), 835-851 (2017).
  • [9] H. Sheykhi, R. Bagherpour, E. Ghasemi, H. Kalhori, Forecasting ground vibration due to rock blasting: a hybrid intelligent approach using support vector regression and fuzzy C-means clustering. Engineering with Computers 34 (2), 357-365 (2018).
  • [10] S. Stanković, M. Dobrilović, V. Škrlec, Optimal positioning of vibration monitoring instruments and their impact on blast-induced seismic influence results. Archives of Mining Sciences 64 (3), 591-607 (2019).
  • [11] P. Mertuszka, M. Szumny, K. Fulawka, J. Maslej, D. Saiang,The Effect of the Blasthole Diameter on the Detona-tion Velocity of Bulk Emulsion Explosive in the Conditions of the Rudna Mine. Archives of Mining Sciences 64(4), 725-737 (2019).
  • [12] AI. Lawal, M.A. Idris, An artificial neural network-based mathematical model for the prediction of blast-induced ground vibrations. International Journal of Environmental Studies 1-17 (2019).
  • [13] D.C. Montgomery, E.A. Peck, Introduction to Linear Regression Analysis Wiley. New York, USA (1992).
  • [14] C. Ferreira, Gene expression programming: a new adaptive algorithm for solving problems. arXiv preprint cs/0102027. (2001).
  • [15] H. Dehghani, Forecasting copper price using gene expression programming. Journal of Mining and Environment9 (2), 349-360 (2018).
  • [16] I.S. Alkroosh, P.K. Sarker, Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming. Computers and Concrete 24 (4), 295-302 (2019).
  • [17] X.Y. Wang, Optimal design of the cement, fly ash, and slag mixture in ternary blended concrete based on gene expression programming and the genetic algorithm. Materials 12 (15), 2448 (2019).
  • [18] B. Jodeiri Shokri, H.R. Ramazi, F. Doulati Ardejani, M. Sadeghiamirshahidi, Prediction of pyrite oxidation in a coal washing waste pile applying artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS). Mine Water and the Environment 33, 146-156 (2014).
  • [19] H. Dehghani, M. Ataee-pour, Development of a model to predict peak particle velocity in a blasting operation. International Journal of Rock Mechanics and Mining Sciences 48 (1), 51-58 (2011).
  • [20] H. Rezaee, M. Asghari, Accounting for secondary variable for the classification of mineral resources using cokriging technique; a case study of Sarcheshmeh porphyry copper deposit. International Journal of Mining and Geo-Engineering 45 (1), 67-69 (2011).
  • [21] M. Pishbin, N. Fathianpour, Assessing the performance of statistical-structural and geostatistical methods in es-timating the 3d distribution of the uniaxial compressive strength parameter in the Sarcheshmeh porphyry copper deposit. Journal of Mining and Environment 48 (1), 11-30 (2014).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bbc2396-505e-4ee8-9b9c-c6eb92a9ddc9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.