Identyfikatory
Warianty tytułu
Betonowe elementy konstrukcyjne ze zbrojeniem z polimeru wzmocnionego włóknem w warunkach pożarowych
Języki publikacji
Abstrakty
Investigations on Fibre Reinforced Polymers (FRPs) at ambient temperature have already proved their effectiveness as an internal reinforcement as an alternative to traditional steel reinforcement because of their high mechanical performance and durability. However, their performance at elevated and high temperatures requires proper understanding to enable safe design methods, as FRPs are highly vulnerable even to remotely elevated temperatures. In addition, aspects related to the thermal conductivity and combustibility should be carefully considered. This article aims to present up-to-date research on reduced-scale and full-scale investigations of internally FRP-reinforced concrete structural elements as well as conclusions on the directions of further research. In terms of mechanical performance, post-heated tests and simultaneous thermo-mechanical loading (at transient and steady states) were analysed.
Badania dotyczące kompozytów z polimerów wzmacnianych włóknem (ang. Fibre Reinforced Polymer) w temperaturze pokojowej wykazały ich efektywność jako wewnętrznego zbrojenia jako alternatywę dla tradycyjnego zbrojenia stalowego dzięki swoim wysokim parametrom mechanicznym i trwałości. Jednakże, ich zachowanie w podwyższonych i wysokich temperaturach wymaga wciąż odpowiedniego zrozumienia, aby umożliwić bezpieczne metody projektowania, ponieważ FRP są bardzo wrażliwe nawet na nieznacznie podwyższone temperatury. Ponadto należy dokładnie rozważyć aspekty związane z przewodnością cieplną i palnością. Artykuł ma na celu przedstawienie aktualnego przeglądu stanu wiedzy dotyczącego badań w skali zredukowanej oraz pełnoskalowych elementów konstrukcyjnych betonowych z wewnętrznym zbrojeniem FRP oraz wnioski dotyczące kierunków dalszych badań. Pod kątem parametrów mechanicznych przeanalizowano wyniki badań po wygrzewaniu oraz pod wpływem jednoczesnego obciążenia termomechanicznego (w stanach nieustalonym i ustalonym).
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
193--201
Opis fizyczny
Bibliogr. 54 poz., il., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry
autor
- Building Research Institute
Bibliografia
- [1] Lau D., Qiu Q., Zhou A., Chow C.L. Long term performance and fire safety aspect of FRP composites used in building structures. Constr. Build. Mater. 2016; vol. 126, pp. 573 - 585. DOI: 10.1016/j.conbuildmat.2016.09.031.
- [2] Brózda K., Selejdak J. Analysis of FRP bars used as reinforcement in concrete structure. Prod. Eng. Arch. 2016; vol. 12, no. 3, pp. 2 - 4. DOI : 10.30657/pea.2016.12.01.
- [3] Duflou J.R., Deng Y., Van Acker K., Dewulf W. Do fiber-reinforced polymer composites provide environmentally benign alternatives? A life-cycleassessment-based study. MRS Bull. 2012; vol. 37, no. 4, pp. 374 - 382. DOI: 10.1557/mrs.2012.33.
- [4] Czarnecki L., Kaproń M., Van Gemert D. Sustainable construction: Challenges, contribution of polymers, research arena. 2nd Int. Conf. Sustain. Constr. Mater. Technol. 2015, pp. 147 - 157, 2010. DOI: 10.1515/rbm-2013-6583.
- [5] El-Salasakawy E., Kassem C., Benmokrane B. Field application of FRP composite bars as reinforcement for bridge decks, in 4th Structural Specialty Conference of the Canadian Society for Civil Engineering, 2002, pp. 1-10.
- [6] Li Z., Ma J., Ma H., Xu X. Properties and applications of basalt fiber and its composites. IOP Conf. Ser. Earth Environ. Sci. 2018; vol. 186, no. 2. DOI: 10.1088/1755-1315/186/2/012052.
- [7] Kim Y.J. Advanced composites in bridge construction and repair. Woodhead Publishing. 2014.
- [8] Kosior-Kazberuk M. Application of basalt-FRP bars for reinforcing geotechnical concrete structures. MATEC Web Conf. – GCCETS2018. 2019; vol. 265, p. 05011. DOI: 10.1051/matecconf/201926505011.
- [9] Elgabbas B., Ahmed F., Benmokrane E. Basalt FRP reinforcing bars for concrete structures. Proc. 4th Asia-Pacific Conf. FRP Struct. APFIS 2013, vol. 440, no. December, pp. 11-13, 2013.
- [10] Maraveas C., Miamis K., Vrakas A.A. Fiber-reinforced polymer-strengthened/reinforced concrete structures exposed to fire: A review. Struct. Eng. Int. J. Int. Assoc. Bridg. Struct. Eng. 2012; vol. 22, no. 4, pp. 500 - 513. DOI: 10.2749/101686612X13363929517613.
- [11] Hawileh R.A., Naser M.Z. Thermal-stress analysis of RC beams reinforced with GFRP bars. Compos. Part B Eng. 2012; vol. 43, no. 5, pp. 2135-2142. DOI: 10.1016/j.compositesb.2012.03.004.
- [12] ASTM Test Method E119. Standard test methods for fire tests of building construction and materials. West Conshohocken: American Society for testing and materials, 2002.
- [13] ASTM Test Method. E1529 Standard test methods for determining effects of large hydrocarbon pool fires on structural members and assemblies. West Conshohocken: American Society for testing and materials, 1993.
- [14] Fehérvári S. Characteristics of tunnel fires. Concr. Struct. 2008; vol. 9, pp. 56 - 60.
- [15] Hawileh R.A., Rasheed H.A. Thermal analysis of GFRP-reinforced continuous concrete decks subjected to top fire. Int. J. Adv. Struct. Eng. 2017; vol. 9, no. 4, pp. 315 - 323. DOI: 10.1007/s40091-017-0168-7.
- [16] Schmitt A., Carvelli V., Pahn M. Thermo-mechanical loading of GFRP reinforced thin concrete panels. Compos. Part B Eng. 2015; vol. 81, pp. 35 - 43. DOI: 10.1016/j.compositesb.2015.06.020.
- [17] Mohmmad S.H., Gülşan M.E., Çevik A . Behaviour of Geopolymer Concrete Two-Way Slabs Reinforced by FRP Bars After Exposure to Elevated Temperatures. Arab. J. Sci. Eng. 2022; vol. 47, no. 10, pp. 12399 - 12421. DOI: 10.1007/s13369-021-06411-y.
- [18] Nigro E., Cefarelli G., Bilotta A., Manfredi G., Cosenza E. Fire resistance of concrete slabs reinforced with FRP bars. Part I: Experimental investigations on the mechanical behavior. Compos. Part B Eng. 2011; vol. 42, no. 6, pp. 1739-1750. DOI: 10.1016/j.compositesb.2011.02.025.
- [19] Hajiloo H., Green M.F., Noël M., Bénichou N., Sultan M. Fire tests on full-scale FRP reinforced concrete slab. Compos. Struct. 2017; vol. 179, pp. 705-719. DOI: 10.1016/j.compstruct.2017.07.060.
- [20] Hajiloo H., Green M.F. GFRP reinforced concrete slabs in fire: Finite element modelling. Eng. Struct. 2019; vol. 183. DOI: 10.1016/j.engstruct.2019.01.028.
- [21] ISO 834-1:1999 Fire-resistance tests – Elements of building construction – Part 1: General requirements.
- [22] Rosa I.C., Santos P., Firmo J.P., Correia J.R. Fire behaviour of concrete slab strips reinforced with sand-coated GFRP bar. Compos. Struct. 2020; vol. 244, no.December 2019, p. 112270, 2020.DOI: 10.1016/j.compstruct.2020.112270.
- [23] Rosa I.C., Firmo J.P., Correia J.R. Fire behaviour of GFRP-reinforced concrete slab strips. Effect of straight and 90° bent tension lap splices. Eng. Struct. 2022; vol. 270, no. July. DOI: 10.1016/j.engstruct.2022.114904.
- [24] Design and construction of building components with fiber-reinforced polymers. CSA-S806. Mississauga, ON, Canada: CSA (Canadian Standards Association), 2012.
- [25] CEN Eurocode 2: Design of Concrete Structures – Parts 1 – 2: General Rules – Structural Fire Design (EN 1992-1-2). Brussels: European Committee for Standardization, 2004.
- [26] Maluk C., Pietro Terrasi G., Bisby L., Stutz A., Hugi E. Fire resistance tests on thin CFRP prestressed concrete slab. Constr. Build. Mater. 2015; vol. 101, no. Part 1, pp. 558 - 571. DOI: 10.1016/j.conbuildmat.2015.10.031.
- [27] ACI 440.1R-15, Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars. American Concrete Institute, 2015.
- [28] Hamad R.J.A., Megat Johari M.A., Haddad R.H. Effects of bars slippage on the pre-and post-heating flexural behavior of FRP reinforced concrete beams: Experimental and theoretical investigations. Int. J. Civ. Eng. Technol. 2019; vol. 10, no. 2, pp. 574 - 602.
- [29] Hamad R.J.A., Haddad R.H., Megat Johari M.A. New anchorage system of bars to improve the mechanical performance of post-heated FRP-reinforced concrete beams. Constr. Build. Mater. 2019; vol. 229, p. 117090. DOI: 10.1016/j.conbuildmat.2019.117090.
- [30] Jafarzadeh H., Nematzadeh M. Evaluation of post-heating flexural behavior of steel fiber-reinforced high-strength concrete beams reinforced with FRP bars: Experimental and analytical results. Eng. Struct. 2020; vol. 225, p. 111292. DOI: 10.1016/j.engstruct.2020.111292.
- [31] Kiari M., Triantafyllidou E., Grosu S., Stratford T., Bisby L. Design of an FRP-Reinforced Concrete Beam System for Fire Performance, in Advanced Composites in Construction, Belfast, UK, 2013.
- [32] Kiari M., Stratford T., Bisby L.A. New design of beam FRP reinforcement for fire performance, in Fifth International Workshop on Performance, Protection & Strengthening of Structures under Extreme Loading., At East Lansing, MI, USA, 2015.
- [33] Protchenko K., Szmigiera E. Post-fire characteristics of concrete beams reinforced with hybrid FRP bar. Materials (Basel). 2020; vol. 13, no. 5. DOI: 10.3390/ma13051248.
- [34] Protchenko K. Residual Fire Resistance Testing of Basalt-and Hybrid-FRP Reinforced Concrete Beams.Materials (Basel). 2022; vol. 15, no. 4.DOI: 10.3390/ma15041509.
- [35] Zhao J., Pan H., Wang Z., Li G. Experimental and Theoretical Study on Flexural Behavior of GFRP- and CFRP-Reinforced Concrete Beams after High-Temperature Exposure. Polymers (Basel). 2022; vol. 14, no. 19. DOI: 10.3390/polym14194002.
- [36] Protchenko K., Szmigiera E., Urbański M., Garbacz A. Mechanical performance of FRP-RC flexural members subjected to fire conditions. Bud. i Archit. 2020; vol. 19, no. 4, pp. 017-030. DOI: 10.35784/bud-arch.2119.
- [37] Tian J., Zhu P., Qu W. Study on fire resistance time of hybrid reinforced concrete beam. Struct. Concr. 2019; vol. 20, no. 6, pp. 1941 - 1954. DOI: 10.1002/suco.201800320.
- [38] Al-Thairy H. A simplified method for steady state and transient state thermal analysis of hybrid steel and FRPRC beams at fire. Case Stud. Constr. Mater. 2020; vol. 13, p. e00465. DOI: 10.1016/j.cscm.2020.e00465.
- [39] Almerich-Chulia A., Martin-Concepcion P., Moreno-Puchalt J., Molines- Cano J.M. Analytical and Experimental Behaviour of GFRP-Reinforced Concrete Columns under Fire Loading. J. Compos. Sci. 2024; vol. 8, no. 5. DOI: 10.3390/jcs8050187.
- [40] Wydra M., Turkowski P., Dolny P., Sadowski G., Grochowska N., Michalski P.P., Wieczorek-Czarnocka M., Pakieła Z., Fangrat J. Basalt fibre reinforced polymer bars as main reinforcement of axially compressed concrete column – experimental and numerical considerations of fire resistance. Fire Saf. J. 2023; vol. 140, no. June. DOI: 10.1016/j.firesaf.2023.103898.
- [41] Wydra M., Sadowski G., Dolny P., Turkowski P., Fangrat J. The performance of concrete cover as a thermal insulation for BFRP bars in tension at early stage of fire. Mater. Bud. 2025; vol. 633, no. 5. DOI: 10.15199/33.2025.05.02.
- [42] Wydra M. PhD thesis: Fire resistance of concrete columns reinforced with BFRP bars. 2023.
- [43] Kodur V., Venkatachari S., Bhatt P., Matsagar V.A., Singh S.B. Fire Resistance Evaluation of Concrete Beams and Slabs Incorporating Natural Fiber- Reinforced Polymers. Polymers (Basel). 2023; vol. 15, no. 3. DOI: 10.3390/polym15030755.
- [44] CSA-S806-02 Design and construction of building components with fibre-reinforced polymers. Ontario: Canadian Standards Association. 2002.
- [45] CAN/CSA-S6-06 Canadian highway bridge design code. Ontario: Canadian Standards Association. 2006.
- [46] ACI 440.1R-06 Guide for the design and construction of concrete reinforced with FRP bars. ACI Comittee 440, American Concrete Institute (ACI), 2006.
- [47] JSCE Recommendation for design and construction of concrete structures using continous fiber reinforcing materials. Tokyo: Research Comittee on Continous Fiber Reinforcin Mateials, Japan Society of Civil Engineers, 1997.
- [48] CNR-DT 203/2006 Guide for the design and construction of concrete structures reinforced with fiber-reinforced polymer bars. Rome: National Research Council, 2006.
- [49] Burgoyne C. et al., Technical report: FRP (Fibre Reinforced Polymer) reinforcement in RC structures. fédération internationale du béton (fib), 2007. doi: 10.1371/journal.pntd.0001792.
- [50] Walraven J., fib Model Code for Concrete Structures 2010: mastering challenges and encountering new ones, Structural Concrete. Wiley Online Library, 2013. [Online]. Available: 10.1002/suco.201200062
- [51] EN 1992-1-1:2023 Eurocode 2: Design of concrete structures – Part 1- 1: General rules and rules for buildings. 2023.
- [52] Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC Text with EEA relevance”, no. 305, pp. 5-43, 2011.
- [53] Terms R.T., Kodur V.K.R., Cheng F.P., Wang T.C., Sultan M.A. NRC Publications Archive Archives des publications du CNRC Guidelines for fire resistance design of high-strength concrete columns. J. Struct. Eng. 2022; vol. 129, pp. 253 - 259, 2005.
- [54] Nigro E., Cefarelli G., Bilotta A., Manfredi A.G., Cosenza E. Guidelines for flexural resistance of FRP reinforced concrete slabs and beams in fire. Compos. Part B Eng. 2014; vol. 58, pp. 103 - 112. DOI:10.1016/j.compositesb.2013.10.007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bb83105-a074-4079-9731-3097a129e85c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.