PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Physico-chemical factors in flotation of Cu-Mo-Fe ores with seawater: a critical review

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aims to provide a comprehensive review on the physico-chemical factors governing the flotation of Cu-Mo-Fe sulfide ores in seawater, which is different from NaCl or KCl solutions because it contains hydrolysable ions such as Mg2+, Ca2+, HCO3-, CO32-, etc., which can precipitate with lime as hydroxides, Ca, and Mg insoluble salts. Under pH 9.0 Mg2+ ions do not depress molybdenite. However, over the critical pH of precipitation of Mg(OH)2 (pH>10.0), molybdenite is strongly depressed in seawater. This detrimental effect on molybdenite discards the use of lime to depress pyrite in Cu-Mo-Fe ores floated in seawater. In plant practice, the use of sodium metabisulfite (MBS) has replaced lime as a pyrite depressant. It works at pH 6.5-7.0 where the natural floatability of molybdenite is enhanced. Consequently, pH control in rougher and cleaning circuits, and the use of MBS to depress pyrite, have allowed the successful use of non-desalinated seawater in flotation of Cu-Mo-Fe sulfide ores at industrial scale.
Słowa kluczowe
Rocznik
Strony
1223--1236
Opis fizyczny
Bibliogr. 93 poz., rys., tab.
Twórcy
autor
  • Min-Flot, Research Center for Mineral Flotation, Santiago, Chile
Bibliografia
  • ALVAREZ, J and Castro, S., 1976. Chalcocite and Chalcopyrite flotation in seawater and highly saline media. Proceedings IV Encontro Nacional de Tratamento de Minerios. São José dos Campos, Brazil, Vol.1, pp. 39-44.
  • BOURNIVAL, G., Pugh, R.J. and Ata, S., 2012. Examination of NaCl and MIBC as bubble coalescence inhibitor in relation to froth flotation. Minerals Engineering, 25, 47-53.
  • BULUT, G., Ceylan, A., Soylu, B. and Goktepe, F., 2011. Role of starch and metabisuphite on pure pyrite and pyritic copper ore flotation. Physicochem. Probl. Miner. Process. 48(1), 39–48.
  • BURN, A.K., 1930. The flotation of chalcopyrite in seawater. Bulletin Institution of Mining and Metallurgy, Nº 314.
  • CASTRO, P. and Huber, M.E., 2005. Marine Biology (5th Edition) Ed. McGraw Hill.
  • CASTRO, S., Correa, A., 1995. The effect of particle size on the surface energy and wettability of molybdenite. Vancouver: 1st UBC-McGill International Symposium on Processing of Hydrophobic Minerals and Fine Coal. CIM MET SOC, pp. 43–57.
  • CASTRO, S., Venegas, I., Landero, A. and Laskowski, J.S., 2010. Frothing in seawater flotation systems. Proc. 25th Int. Mineral Processing Congress, Brisbane, pp. 4039-4047.
  • CASTRO, S., 2010b. Proceso para pre-tratar agua de mar y otras aguas salinas para su utilización en procesos industriales. Patente de Invención Provisional, Universidad de Concepción, n°00475/INAPI (12 de mayo 2010) (Spanish text).
  • CASTRO, S. and Laskowski, J.S., 2011. Froth flotation in saline water. KONA Powder and Particle Journal No.29, 4-15.
  • CASTRO, S., 2012a. Challeges in flotation of Cu-Mo sulfide ores in seawater. In: Water in Mineral Processing – Proc. 1st Int. Symposium (J. Drelich, ed.), SME, pp. 29-40.
  • CASTRO, S., Toledo, P. and Laskowski, J.S., 2012b. Foaming properties of flotation frothers at high electrolyte concentrations. In: Water in Mineral Processing – Proc. of the First International Symposium, SME, (J. Drelich, Ed.), pp. 51-60.
  • CASTRO, S., Rioseco, P. and Laskowski., J.S., 2012c. Depression of molybdenite in sea water. In: Proc. XXVI International Mineral Processing Congress, New Delhi-India.
  • CASTRO S., Miranda, C., Toledo P. and Laskowski, J.S., 2013. Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater. Int. J. Miner. Process., 124, 8-14.
  • CASTRO, S., Uribe, L. and Laskowski, J.S., 2014. Depression of inherently hydrophobic minerals by hydrolyzable metal cations: molybdenite depression in seawater. 27th Int. Mineral Processing Congress (IMPC 2014), Santiago, Chapter 3, pp. 207-216.
  • CASTRO, S., Lopez-Valdivieso, A., Laskowski, J.S., 2016. Review of the flotation of molybdenite. Part I: Surface properties and floatability. International Journal of Mineral Processing 148, 48–58.
  • CRAIG, S.J.V., Ninham, B.W. and Pashley, R.M. 1993. The effect of electrolytes on bubble coalescence in water. J. Phys. Chem., Vol. 97, 10192-10197.
  • CHANDER, S., 1988. Inorganic depressants for sulphide minerals, in: (Somasundaran, P. and Moudgil, B. M.) Reagents in mineral processing. New York, Marcel Dekker: 429-469.
  • CHANG, Z., Chen, X. and Peng, Y., 2018. The effect of saline water on the critical degree of coal surface oxidation for coal flotation. Minerals Engineering. 119, 222-227.
  • CHO, Y.S. and Laskowski, J.S., 2002. Effect of flotation frothers on bubble size and foam stability. Int. J. Mineral Processing, 64, 69-80.
  • CUSHING, M. L., Ghahreman, A., Kelebek, S., 2017. Electrochemical characteristics of iron sulfide minerals in the presence of SMBS and TETA and the case for their joint action. COM, Annual Conference of Metallurgists Organized by MetSoc of CIM, 1-10.
  • DÁVILA-PULIDO, G.I., Uribe-Salas, A., and Espinosa-Gómez, R., 2011. Comparison of the depressant action of sulfite and metabisulfite for Cu-activated sphalerite. International Journal of Mineral Processing 101, 71–74.
  • EJTEMAEI, M. and Nguyen, A.V., 2017. Characterisation of sphalerite and pyrite surfaces activated by copper sulphate. Minerals Engineering. Vol. 100, 223-232.
  • FIROUZI, M., Howes, T. and Nguyen, A.V., 2015. A quantitative review of the transition salt concentration for inhibiting bubble coalescence. Advances in Colloid and Interface Science.222, 305-318.
  • FUERSTENAU, D.W., Rosenbaum, J.M., Laskowski, J., 1983. Effect of surface functional groups on the flotation of coal. Colloids Surf. 8, 153–173.
  • FUERSTENAU, M.C., Jameson, G.J., Yoon, R.H., 2007. Froth Flotation: A Century of Innovation. Society for Mining, Metallurgy, and Exploration, Littleton, Colorado.
  • GORAIN, B., 2009. Separation of copper minerals from pyrite in buffered water solutions using air-metabisulfite treatment. U.S. Provisional Patent n°61/266,770.
  • GORAIN, B. K., 2012. Developing solutions to complex flotation problems. Proc. International Mineral Processing Congress (IMPC 2012), New Delhi-India.
  • GRANO S.R., Johnson N.W., Ralston J., 1997, Control of the solution interaction of metabisulphite and ethyl xanthate in the flotation of the Hilton ore of Mount Isa Mines Limited, Australia, Minerals Engineering, 10, No.1, 17-45.
  • GRANO, S.R., Lauder, D.W., Johnson, N.W., Smart, R.St.C. and Ralston, J., 1991. Comparison of ethyl xanthate and diisobutyldithiophosphinate collectors for the lead roughing of the Hilton ore of Mount Isa Mines Ltd. Fifth Extractive Metallurgy Conference. Australasian Institute of Mining and Metallurgy Publisher, Parkville, pp. 203–210.
  • GRAU, R.A. and Laskowski, J.S., 2006. Role of frothers in bubble generation and coalescence in a mechanical flotation cell. The Canadian Journal of Chemical Engineering., 84(2):170-182.
  • GRAU, R.A., Laskowski, J.S., Heiskanen, K., 2005. Effect of frothers on bubble size. International Journal of Mineral Processing 76, 225–233.
  • HAIG-SMILLIE, L. D., 1973. Sea Water Flotation. Texade Mines, Ltd. GILLES BAY, B. C., November 29.
  • HAN, M.Y., Ahn, H.J., Shin, M.S., Kim, S.R., 2004. The effect of divalent metal ions on the zeta potential of bubbles. Water Science and Technology. 50(8) 49-56.
  • HIRAJIMA, T.; Suyantara, G.P.W.; Ichikawa, O.; Elmahdy, A.M.; Miki, H.; Sasaki, K., 2016. Effect of Mg2+ and Ca2+ as divalent seawater cations on the floatability of molybdenite and chalcopyrite. Miner. Eng., 96–97, 83–93.
  • JELDRES, R.I., Arancibia-Bravo, M.P., Reyes, A., Aguirre, C.E., Cortes, L., Cisternas, L.A., 2017. The impact of seawater with calcium and magnesium removal for the flotation of copper-molybdenum sulphide ores. Miner. Eng. 109, 10–13.
  • JELDRES, R.I., Forbes, L., Cisternas, L.A., 2016. Effect of Seawater on Sulfide Ore Flotation: a Review. Miner. Process. Extr. Metall. Rev. 37, 369–384.
  • KHMELEVA, T.N., Skinner, W., Beattie, D.A., Georgiev, T.V., 2002. The effect of sulphite on the xanthate-induced flotation of copper-activated pyrite. Physicochem. Probl. Miner. Process. 36, 185–195.
  • KHMELEVA, T.N., Beattie, D.A., Georgiev, T.V., Skinner, W.M., 2003. Surface study of the effect of sulfite ions on copper-activated pyrite pre-treated with xanthate. Miner. Eng. 16, 601–608.
  • KHMELEVA, T.N., Skinner, W., Beattie, D.A., 2005. Depressing mechanisms of sodium bisulphite in the collectorless flotation of copper-activated sphalerite. Int. J. Miner. Process. 76 (1–2), 43–53.
  • KHMELEVA, T.N., Chapelet, J.K., Skinner, W.M., Beattie, D.A., 2006. Depression mechanisms of sodium bisulphite in the xanthate-induced flotation of copper activated sphalerite. Int. J. Miner. Process. 79 (1), 61–75.
  • KLASSEN, V.I. and Mokrousov, V.A., 1963. An Introduction to the Theory of Flotation, Butterworths, London.
  • KOMIYAMA, M., Kiyohara, K., Li, Y., Fujikawa, T., Ebihara, T., Kubota, T., and Okamoto, Y., 2004, “Crater structures on a molybdenite basal plane observed by ultra-high vacuum scanning tunneling microscopy and its implication to hydrotreating.” Journal of Molecular Catalysis A: Chemical, 215(1–2). pp. 143–147.
  • KRACHT, W., Finch, J.A., 2010. Effect of frother on initial bubble shape and velocity. International Journal of Mineral Processing 94 (3-4), 115-120.
  • KURNIAWAN, A., Ozdemir, O., Nguyen, A., Ofori, P., Firth, B., 2011. Flotation of coal particles in MgCl2, NaCl, and NaClO3 solutions in the absence and presence of Dowfroth 250. Int. J. Miner. Process. 98, 137–144.
  • LASKOWSKI, J.S., Iskra, J., 1970. Role of capillary effects in bubble-particle collision in flotation. Trans. IMM, Section C., 79, C6-C10.
  • LASKOWSKI, J.S., Xu, Z., Yoon, R.H., 1991. Energy barrier in particle-bubble attachment and its effect on flotation kinetics. Proc. 17th Int. Mineral Processing Congress, Dresden, Vol., 2, pp. 237-249.
  • LASKOWSKI, J.S., Cho, Y.S. and Ding, K., 2003. Effect of frothers on bubble size and foam stability in potash ore flotation systems, Canadian J. Chem. Eng., 81, 63-69.
  • LASKOWSKI, J.S. and Castro, S., 2008. Flotation in concentrated aqueous electrolyte solutions. Proc. 11th International Mineral Processing Symposium, Belek-Antalya, Turkey, pp. 281-290.
  • LASKOWSKI, J.S. and Castro, S., 2012. Hydrolyzing ions in flotation circuits: sea water flotation. Proc. XIII International Mineral Processing Symposium, Bodrum-Turkey, pp. 219-227.
  • LASKOWSKI, J.S., Castro, S. and Ramos, O., 2013. Effect of seawater main components on frothability in the flotation of Cu-Mo sulfide ore. Physicochem. Probl. Miner. Process. 50(1), 17−29.
  • LASKOWSKI, J. and Castro, S., 2014. Flotation in highly concentrated electrolyte solutions. Proc. IMPC 2014 (Keynote), Santiago, Chile.
  • LASKOWSKI, J. and Castro, S., 2015. Flotation in concentrated electrolyte solutions. International Journal of Mineral Processing 144, 50–55.
  • LASKOWSKI, J. S. and Castro, S., 2017. Hydrolysis of metallic ions in mineral processing circuits and its effect on flotation. COM 2017 Conference of Metallurgists, Vancouver, August 27-30.
  • LEKKI, J. and Laskowski, J.S., 1972. Influence of NaCl on the flotation of copper sulphide ores. Minerales, Vol. 27, (118), 3-7. (Spanish text).
  • LESSARD R.R., and Zieminski, S.A., 1971. Bubble Coalescence and Gas Transfer in Aqueous Electrolyte Solutions. Industrial & Engineering Chemistry Fundamentals, 10(2), 260-269.
  • LI, C. and Somasundaran, P., 1991. Reversal of bubble charge in multivalent inorganic salt solutions – effect of magnesium. J. Coll. Interf. Sci., 146, 215-218.
  • LI, C. and Somasundaran, P., 1992. Reversal of bubble charge in multivalent inorganic salt solutions – effect of aluminium. J. Coll. Interf. Sci., 148, N°2, 587-591.
  • LI, Y., Li, W., Xiao, Q., He, N., Ren, Z., Lartey, C. and Gerson, A. R., 2017. The Influence of Common Monovalent and Divalent Chlorides on Chalcopyrite Flotation. Minerals 2017, 7, 111.
  • LI, J., Miller, J.D., Wang, R.Y., Le Vier, M., 1995. The ammoniacal thiosulfate system for precious metal recovery. Proceedings XIX Int. Mineral Processing Congress, SME, Littleton, Colorado, USA, vol. 4, pp. 37–42.
  • LI, W., Li, Y., Xiao, Q., Wei, Zh. and Song, S., 2018. The Influencing Mechanisms of Sodium Hexametaphosphate on Chalcopyrite Flotation in the Presence of MgCl2 and CaCl2. Minerals, 2018,8(4), 150.
  • LEKKI, J. and Laskowski, J.S., 1972. Influence of NaCl on the flotation of copper sulfide ores. Minerales, Vol. 27, (118), 3-7. (Spanish text).
  • LOPEZ-VALDIVIESO, A., Sanchez-Lopez, A.A. and Song, S., 2005. On the cathodic reaction coupled with the oxidation of xanthates at the pyrite/aqueous solution interface. International Journal of Mineral Processing, 77, 154.
  • LOPEZ-VALDIVIESO, A., Madrid-Ortega, I., Valdez-Pérez, D., Yang, B., Song, S., 2012. The heterogeneity of the basal plane of molybdenite: its effect on molybdenite floatability and calcium ion adsorption. Santiago: 9th International Mineral Processing Conference. PROCEMIN, pp. 21–23.
  • QUINN, J.J., Kracht, W., Gomez, C.O., Gagnon, C., Finch, J.A., 2007. Comparing the effect of salts and frother (MIBC) on gas dispersion and froth properties. Minerals Engineering, 20 (14), 1296–1302.
  • LUCAY, F., Cisternas, L. A., Gálvez, E. D., and López-Valdivieso, A., 2015, Study of the natural floatability of molybdenite fines in saline solutions. Effect of gypsum precipitation. Minerals & Metallurgical Processing Journal, 32, 203–208.
  • MANONO, M.S., Corin, K.C. and Wiese, J.G., 2013. The effect of ionic strength of plant water on foam stability: A 2-phase flotation study. Minerals Engineering, 40, 42-47.
  • MILLER J.D., 1970, Pyrite depression by reduction of solution oxidation potential. Report to EPA Water Quality Office, Grant No. 12010 DIM.
  • MONARDES, A., 2009. Use of seawater in grinding-flotation operations and tailing disposal, Proc. 11th Symp. Mineral Processing Moly Cop 2009 (Spanish text).
  • MORALES, J.E., 1975. Flotation of the Andacollo’s ore in pilot plant by using seawater, Minerales, n°130, Vol. 30, 16-32 (Spanish text).
  • MORENO, P.A., Aral, H., Cuevas, J., Monardes, A., Adaro, M., Norgate, T., Bruckard, W., 2011. The use of seawater as process water at Las Luces copper–molybdenum beneficiation plant in Taltal (Chile). Miner. Eng. 24 (8), 852– 858.
  • MOSLEMI, H. and Gharabaghi, M., 2017. A review on electrochemical behavior of pyrite in the froth flotation process. Journal of Industrial and Engineering Chemistry, 47, 1–18.
  • MU, Y., Peng, Y., and Lauten, R. A., 2016. The depression of pyrite in selective flotation by different reagent systems – A Literature review. Minerals Engineering, 96-97, 143–156.
  • NAGARAJ, D.R., Farinato, R., 2014. Chemical factor effects in saline and hypersaline waters in the flotation of Cu and Cu-Mo ores. Presented at the XXVII International Mineral Processing Congress, XXVII International Mineral Processing Congress, Santiago, Chile.
  • NAGARAJ, D. R., Farinato, R., and Tercero, N., 2016. Probing the interface and interphase region of molybdenite edge and face in ore flotation pulps: effect of Mg2+ ions and their hydrolysis products. Proc. 28th Int. Mineral Pocessing Congress, Quebec City, 2016.
  • PAN, L., and Yoon, R., 2018. Effects of electrolytes on the stability of wetting films: Implications on seawater flotation, 2018.
  • PARRAGUEZ, L., Bernal, L. and Cartagena, G., 2009. Chemical study for selectivity and recovery of metals sulphides by flotation using seawater. Proc. PROCEMIN 2009, pp.323-333.
  • PARRAGUEZ, L., Bernal, L. y Cartagena, G., 2010. Flotación con agua salina en proyecto Esperanza. Proc. WIM2010 (Water in Mining), 2° Congreso Internacional en Gestión del Agua en la Industria Minera, Gecamin, 9 de junio 2010, Santiago-Chile (Spanish text).
  • PENG, Y., Wang, B. and Gerson, A., 2012. The effect of electrochemical potential on the activation of pyrite by copper and lead ions during grinding. International Journal of Mineral Processing. Volumes 102–103, 141-149.
  • PUGH, R.J., Weissenborn, P. and Paulson, O., 1997. Flotation in inorganic electrolytes; the relationship between recover of hydrophobic particles, surface tension, bubble coalescence and gas solubility. International Journal of Mineral Processing, 51(1–4), 125-138.
  • PYTKOWICZ, R. M. and Atlas, E., 1975. Buffer intensity of seawater. Limnology and Oceanography. Vol. 20 (2), 222-229.
  • QIU, Z., Liu, G., Liu, Q., Zhong, H., 2016. Understanding the roles of high salinity in inhibiting the molybdenite flotation. Colloids Surf. Physicochem. Eng. Asp. 509, 123–129.
  • QUINN, J. J., Kracht, W., Gómez, C. O., Gagnon, C. and Finch, J. A., 2007. Comparing the Effect of salts and frother (MIBC) on gas dispersion and froth properties. Minerals Engineering, Vol. 20, 1296-1302.
  • RAMOS, O., Castro, S. and Laskowski, J.S., 2013. Copper-molybdenum ores flotation in sea water: Floatability and frothability. Minerals Eng., 53, 108-112.
  • REBOLLEDO, E., Laskowski, J. S., Gutierrez, L., and Castro, S., 2017. Use of dispersants in flotation of molybdenite in seawater. Minerals Engineering, 100, 71–74.
  • REY, M. and RAFFINOT, P., 1966. Flotation of ore in sea water: high frothing, soluble xanthate collecting. World Mining, June, 18.
  • RICCI, J. E. and Linke, W.F., 1951. The System Magnesium Molybdate-Water and the 25° Isotherm of the System MgMoO4-MgCl2-H2O. J. Am. Chem. Soc.,73(8), 3603–3607.
  • SHEN, W.Z., Fornasiero, D., and Ralston, J., 2001.Flotation of sphalerite and pyrite in the presence of sodium sulfite. International Journal of Mineral Processing, 63, 17–28.
  • SUYANTARA, G.P.W.; Hirajima, T.; Miki, H.; Sasaki, K., 2018. Floatability of molybdenite and chalcopyrite in artificial seawater. Mineral Engineering, 115, 117–130.
  • URIBE, L., Gutierrez, L., Castro, S and Laskowski, J.S., 2017. Effect of redox conditions and copper ions on pyrite depression by sodium metabisulfite and sodium sulfite in seawater. CIM Journal, Vol. 8, N°4, 215-222.
  • VEKI, L., 2013. The use of seawater as process water in concentration plant and the effects on the flotation performance of Cu-Mo ore. Master’s thesis, University of Oulu Faculty of Technology.
  • WANG, B. and PENG, Y., 2013. The behaviour of mineral matter in fine coal flotation using saline water. Fuel, 109, 309–315.
  • WEISSENBORN, P.K., Pugh, R.J., 1995. Surface tension and bubble coalescence phenomena of aqueous solutions of electrolytes. Langmuir 11 (5), 1422–1426.
  • YAMAMOTO, T., 1980. Mechanism of depression of pyrite and sphalerite by sulfite. In: Jones, M.J. (Ed.), Complex Sulfide Ores. Inst. Miner. Metall., London, pp. 71–78.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bb74d83-1815-4c2b-b056-c6eaaf9828f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.