
Jan Długosz University in Częstochowa

Scientific Issues, Mathematics XIV, Częstochowa 2009

GENERALIZATION OF PROBABILITY

DENSITY OF RANDOM VARIABLES

Marcin Ziółkowski

Institute of Mathematics and Computer Science
Jan Długosz University in Częstochowa

al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
e-mail: m.ziolkowski@ajd.czest.pl

Abstract

In this paper we present generalization of probability density of random variables. It

is obvious that probability density is definite only for absolute continuous variables.

However, in many practical applications we need to define the analogous concept

also for variables of other types. It can be easily shown that we are able to generalize

the concept of density using distributions, especially Dirac’s delta function.

1. Introduction

Let us consider a functional sequence fn : R→ [0,+∞) given by the formula
(Fig. 1):

fn(x) =

{
n for x ∈ [− 1

2n , 1
2n ]

0 for x /∈ [− 1
2n , 1

2n ]
, n = 1, 2, . . . .

It is clear that every term of this sequence can be treated as a probability
density of some absolute continuous random variable. Suitable distribution
functions are given by the following formula (Fig. 2):

Fn(x) =






0 for x < − 1
2n

nx + 1
2 for x ∈ [− 1

2n , 1
2n ]

1 for x > 1
2n

, n = 1, 2, . . . .
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Fig. 1.

Fig. 2.

Distribution given by functions fn(x) or Fn(x) (n = 1, 2, . . . ) is uniform
on the interval [− 1

2n , 1
2n ].

Now we define a sequence an (n = 1, 2, . . . ) by the formula:

an =

∫ ∞

−∞
fn(x) dx.

The sequence an is constant (an = 1 for all n ∈ N+), so an → 1 when
n → ∞. On the other hand, the limit of the sequence fn(x) is not a real
function but distribution. This limit is called Dirac’s delta function δ(x).

δ(x) := lim
n→∞

fn(x).
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By intuition, we understand Dirac delta function as below (Fig. 3):

δ(x) =

{
0 for x 6= 0,

+∞ for x = 0.

Fig. 3.

Fig. 4.

To show the properties of the sequences an and fn(x) let us treat Dirac’s
delta function as a density of a degenerate random variable (a discrete ran-
dom variable which has only one value).

Let us note additionally that Dirac’s delta function can be treated as
a distributive derivative of Heaviside function 1(x) (Fig. 4), which is an
obvious distribution function of degenerate random variable.
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2. Probability density for discrete random variables

Consider a discrete random variable, i.e a random variable which has finite
or countable number of values xk with probability pk. Assume that pk > 0
for all k and

∑
k pk = 1. For such a specified random variable we can define

the probability density by the following formula:

f(x) =
∑

k

pk · δ(x − xk). (1)

It is obvious that f(x) ≥ 0 for all x ∈ R. After calculation, because of
properties of a sequence an, we also obtain

∫ ∞

−∞
f(u) du = 1.

A diagram of such a specified density is shown in Fig. 5.

Fig. 5.

The distribution function of a discrete random variable can be defined
using the Heaviside function by the formula (Fig. 6):

F (x) =
∑

k

pk · 1(x− xk). (2)

We can now notice that f(x) = ∂F (x)
∂x in the sense of distributive deriva-

tive.

3. Generalized probability density for other random variables

It is clear that generalized probability density (using Dirac’s delta function)
can be defined for other types of random variables. Let us assume that a ran-
dom variable has finite or countable number of jump points (the jump point
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Fig. 6.

is the point of discontinuity x of distribution function F (x) for which we
have the inequality F (x + ε)− F (x) > 0) for every ε > 0.

By this assumption, we can specify the probability density as a
distributive derivative of a distribution function (f(x) = F ′(x)).

Example.

TV advertising can be divided into three types. Half of them lasts from 0
to 1 minute (let us assume that this is a uniform distribution), 20% exactly
2 minutes (political sets) and the rest lasts from 3 to 4 minutes (also a
uniform distribution).

Let us find formulas for distribution function and probability density
for random variable which specify time of TV advertising. The distribution
function is defined by the following formula (Fig. 7):

F (x) =






0 for x ≤ 0

0.5x for x ∈ [0, 1]

0.5 for x ∈ (1, 2]

0.7 for x ∈ (2, 3)

0.3x − 0.2 for x ∈ [3, 4]

1 for x > 4.

This formula can be simplied if we use the Heaviside function:

F (x) =






0.5x for x ∈ [0, 1]

0.3x− 0.2 for x ∈ [3, 4]

0.5 · 1(x− 1) + 0.2 · 1(x− 2) + 0.3 · 1(x− 4) otherwise.
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Fig. 7.

Fig. 8.

Probability density can be defined by the following formula:

f(x) = F ′(x) =






0.5 for x ∈ [0, 1]

0.3 for x ∈ [3, 4]

0.5 · δ(x− 1) + 0.2 · δ(x − 2) + 0.3 · δ(x− 4) otherwise.

But if x ∈ (−∞, 0) ∪ (1, 3) ∪ (4,+∞), then we have
0.5 · δ(x − 1) + 0.2 · δ(x − 2) + 0.3 · δ(x − 4) = 0.2 · δ(x − 2).

So finally we have:

f(x) = F ′(x) =






0.5 for x ∈ [0, 1]

0.3 for x ∈ [3, 4]

0.2 · δ(x− 2) otherwise.

A diagram of such a specified density is shown in Fig. 8.
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4. Applications of generalized probability density

A generalized density of random variable is very useful in practical calcu-
lations. It can be easily shown that formulas, in which density of absolute
continuous random variable is present, can be generalized for many other
types of random variables. For example, we can use only one formula to cal-
culate moments of random variables independently on their types. We can
use the following formula:

Eξk =

∫ ∞

−∞
xk f(x) dx, (3)

where f(x) is a generalized density of random variable. In many cases it is
a distribution, not a function (then we use Dirac’s delta function to define
it like in an example).

Let us calculate the first moment of the random variable presented in the
example. Because of definition of generalized density f(x), using integration
by parts, we obtain

Eξ =

∫ ∞

−∞
x f(x) dx =

∫ 1

0
0.5x dx+

∫ 4

3
0.3x dx+

∫ 3

1
0.2x ·δ(x−2) dx =

= 0.25x2
∣∣x=1

x=0
+ 0.15x2

∣∣x=4

x=3
+ 0.2x · 1(x− 2)

∣∣x=3

x=1
− 0.2 ·

∫ 3

1
1(x− 2) dx =

= 0.25 + 1.05 + 0.6− 0.2 = 1.7.

We can note that the first moment can be obtained without using the
generalized density but the result is exactly the same.

In queueing theory we often assume that a density of random variable
exists to define the service intensity. In this case, service intensity is defined
by the formula:

µ(x) =
f(x)

1− F (x)
, (4)

where f(x) and F (x) are a density and a distribution function of service
time, respectively.

The function µ(x) reduces calculations in many real models. Now we
can use service intensity almost always, when we assume that f(x) is a
generalized density.

As it was shown, the concept of generalization of random variable proba-
bility density is very useful. It helps to reduce calculations in many practical
problems.
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