Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The epicenter, origin time, and magnitude of the earthquake are critical earthquake source parameters, as they can provide data support for earthquake emergency rescue and earthquake risk research, among others. Here, the high-rate displacement time series of 11 Global Navigation Satellite System (GNSS) stations during the 2022 Menyuan M6.9 earthquake were acquired using GPS, GPS/GLONASS, and GPS/GLONASS/Galileo observations using the PRIDE PPP-AR software. Our analysis revealed that the root mean squares (RMS) of displacement derived from GPS/GLONASS/Galileo relative to GPS derived in the north, east, and up components were improved by 23.3, 34.4, and 24.4%, respectively. The epicenter location of the Menyuan earthquake based on GPS/GLONASS/Galileo-derived time series of each station was 101.201°E and 37.791°N, the earthquake origin time was 17:45:23.7 (UTC), and the moment magnitude was 6.62, which were more accurate than the GPS and GPS/GLONASS results. Although there was no significant advantage of calculating the coseismic displacement by multi-day static solution from GPS/GLONASS/Galileo, our results showed that the multi-GNSS combination can improve the stability of time series and reduce noise, and more realistically describe the surface displacement changes during earthquakes; accuracy of earthquake source parameters estimation, can, therefore, be improved with the use of multi-GNSS data.
Wydawca
Czasopismo
Rocznik
Tom
Strony
625--636
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- The First Monitoring and Application Center, China Earthquake Administration, Tianjin, China
autor
- The First Monitoring and Application Center, China Earthquake Administration, Tianjin, China
autor
- The First Monitoring and Application Center, China Earthquake Administration, Tianjin, China
autor
- Institute of Geophysics, China Earthquake Administration, Beijing 100081, China
- China Earthquake Networks Center, Beijing 100045, China
autor
- The First Monitoring and Application Center, China Earthquake Administration, Tianjin, China
Bibliografia
- 1. Allen RV (1978) Automatic earthquake recognition and timing from single traces. Bull Seismol Soc Am 68(5):1521–1532
- 2. Allen RV (1982) Automatic phase pickers:their present use and future prospects. Bull Seismol Soc Am 72(6B):S225–S242
- 3. Boehm J, Niell A, Tregoning P et al (2006) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07304
- 4. Fang RX, Lv HH, Shu YM et al (2021) Improved performance of GNSS precise point positioning for high-rate seismogeodesy with recent BDS-3 and Galileo. Adv Space Res 68:3255–3267
- 5. Fang RX, Shi C, Song WW et al (2014a) Determination of earthquake magnitude using GPS displacement waveforms from real-time precise point positioning. Geophys J Int 196:461–472
- 6. Fang RX, Shi C, Wang GX et al (2014b) Epicenter and magnitude of large earthquake determined from high-rate GPS observations: a case study of the 2008 M8.0 Wenchuan Earthquake. Sci China Earth Sci. https://doi.org/10.1007/s11430-013-4803-2
- 7. Fang RX, Zheng JW, Geng JH et al (2020) Earthquake magnitude scaling using peak ground veolocity derived from High-Rate GNSS observations. Seismol Res Lett 92(1):227–237
- 8. Gao ZY, Li YC, Shan XJ et al (2021) Earthquake magnitude estimation from high-rate GNSS data: a case study of the 2021 Mw 7.3 Maduo earthquake. Remote Sens 13:4478
- 9. Geng JH, Mao SY (2021) Massive GNSS network analysis without baselines: undifferenced ambiguity resolution. J Geophys Res Solid Earth 126:e2020JB021558
- 10. Geng JH, Jiang P, Liu JN et al (2017) Integrating GPS with GLONASS for high-rate seismogeodesy. Geophys Res Lett 44:3139–3146
- 11. Geng JH, Pan YX, Li XT et al (2018) Noise characteristics of high-rate multi-GNSS for subdaily crustal deformation monitoring. J Geophys Res 123(2):1987–2002
- 12. Geng JH, Chen XY, Pan YX et al (2019) PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution. GPS Solutions 23:91
- 13. Geng JH, Yang SF, Guo J (2021) Assessing IGS GPS/Galileo/BDS-2/BDS-3 phase bias products with PRIDE PPP-AR. Satell Navig 2(1):1–15
- 14. Jiang WP, Xu CJ, Li ZW et al (2022) Using space observation techniques to study temporal and spatial characteristics of seismogenic process, occurrence and deformation of the Qinghai Madoi Mw 7.4 earthquake. Chin J Geophys 65(2):495–508. https://doi.org/10.6038/cjg2022P0732. (in Chinese)
- 15. Li JW, Chen CY, Zhan W et al (2021a) Research on fast acquisition of GNSS coseismic horizontal displacement of Maduo Ms7.4 earthquake in Qinghai Province. Seismol Geol 43(5):1073–1084
- 16. Li ZC, Ding KH, Zhang P et al (2021b) Coseismic deformation and slip distribution of 2021 Mw 7.4 Madoi earthquake from GNSS observations. Geomat Inf Sci Wuhan Univ 46(10):1489–1497 (in Chinese)
- 17. Li ZH, Han BQ, Liu ZJ et al (2022a) Source parameters and slip distributions of the 2016 and 2022a Menyuan, Qinghai earthquakes constrained by InSAR observations. Geomatics and Information Science of Wuhan Universityhttps://doi.org/10.13203/j.whugis20220037
- 18. Li ZM, Gai HL, Li X et al (2022b) Seismogenic fault and coseismic surfaces deformation of the Menyuan Ms6.9 earthquake in Qinghai. Acta Geol Sin 96(1):330–335 (in Chinese)
- 19. Maeda N (1985) A method for reading and checking phase times in autoprocessing system of seismic wave data. Zisin Jishin 38:365–379
- 20. Melbourne WG (1985) The case for ranging in GPS-based geodetic systems. In: Proceeding of 1st international symposium on precise positioning with the global positioning system, April 15–19, Rockville, pp 373–386
- 21. Melgar D, Crowell BW, Geng JH et al (2015) Earthquake magnitude calculation without saturation from the scaling of peak ground displacement. Geophys Res Lett 42:5197–5205
- 22. Pan JW, Li HB, Marie LC et al (2022) Coseismic surface rupture and seismogenic structure of the 2022 Ms6.9 Menyuan earthquake, Qinghai Province, China. Acta Geol Sin 96(1):215–231 (in Chinese)
- 23. Petit G, Luzum B (2010) IERS Conventions 2010, IERS Tech. Note 36. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Mian, Germany
- 24. Rothacher M, Schmid R (2010) ANTEX: the antenna exchange format, version 1.4. IGS Central Bureau, Pasadena
- 25. Saastamoinen J (1973) Contributions to the theory of atmospheric refraction. Bull Géod 47:13–34
- 26. Shan XJ, Yin H, Liu XD et al (2019) High-rate real-time GNSS seismology and early warning of earthquakes. Chin J Geophys 62(8):3043–3052
- 27. Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70:65–82
- 28. Wang M, Shen ZK (2020) Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J Geophys Res Solid Earth 125:e2019JB018774
- 29. Wübbena G (1985) Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In: Proceeding of 1st international symposium on precise positioning with the global positioning system, April 15–19, Rockville, pp 403–412
- 30. Yin HT, Zhang PZ, Gan WJ et al (2010) Near-field surface movement during the Wenchuan Ms8.0 earthquake measured by high-rate GPS. Chin Sci Bull 26(55):2621–2626
- 31. Yin H, Shan XJ, Zhang YF et al (2018) Rapid determination of source parameters for the 2008 Wenchuan earthquake constrained by high-rate GPS and strong motion data. Chin J Geophys 61(5):1806–1816 (in Chinese)
- 32. Zhang XH, Hu JH, Ren XD (2020) New progress of PPP/PPP-RTK and positioning performance comparison of BDS/GNSS PPP. Acta Geodaetica Et Cartographica Sinica 49(9):1084–1100 (in Chinese)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bb18df1-896c-457e-bd20-530df34bda96