Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research analyses contact pressure, sliding distance, and wear rate at the trunnion interface of hip implants during various activities to understand post-hip replacement outcomes. The study uses a numerical model and ISO-7206–6:2013 constraints with an AML hip implant. Greater Fx, Fy, and Fz forces broaden contact pressure distribution. The highest pressure occurs on the proximal superolateral surface, with the lowest on the anterior and posterior surfaces. The HIGH100 (individuals weighing above 100 kg) weight category demonstrates 2 times higher maximum and average contact pressure compared to AVG75 (individuals weighing 75 kg) for sit-down and knee bend activities. Force components and the duration of a full gait cycle influence sliding distance. Stance activities show the highest sliding distance due to rapid changes in force load during the gait cycle. For sit-down and knee bend activities, the total sliding distance is 2.5 times higher in the HIGH100 weight category compared to AVG75. Sliding distance primarily occurs at the proximal superolateral-inferomedial-anterior-posterior contact surface, decreasing distally. Based on contact pressure, sliding distance, and wear volume rate, jogging and stance activities pose the highest risk for hip replacement patients, while cycling is the safest. The HIGH100 weight group exhibits 5- and 4-times greater wear volume rates than AVG75 in sit-down and knee bend activities, respectively. The research findings align with wear degradation observed in retrieved hip implants, validating the study. These insights can assist patients in making informed decisions about performing activities after surgery while enabling physicians to provide accurate guidelines.
Wydawca
Czasopismo
Rocznik
Tom
Strony
137--153
Opis fizyczny
Bibliogr. 97 poz., rys., tab., wykr.
Twórcy
autor
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
autor
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
- Faculty of Engineering, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
autor
- Faculty of Engineering, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
autor
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
autor
- Pusat Sains Ankasa (ANGKASA), Institut Perubahan Iklim, Universiti Kebangsaan Malaysia (UKM), Bangi 43600 Selangor, Malaysia
autor
- Department of Electrical Engineering, College of Engineering, University Hail, Hail 81481, Saudi Arabia
autor
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
autor
- Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia
Bibliografia
- [1] Bottai V, Dell’Osso G, Celli F, Bugelli G, Cazzella N, Cei E, et al. Total hip replacement in osteoarthritis: the role of bone metabolism and its complications. Clin Cases Miner Bone Metab 2015;12:247-50.
- [2] Oh ES, Sieber FE, Leoutsakos JM, Inouye SK, Lee HB. Sex differences in hip fracture surgery: preoperative risk factors for delirium and postoperative outcomes. J Am Geriatr Soc 2016;64:1616-21.
- [3] Marcucci G, Brandi ML. Rare causes of osteoporosis. Clin Cases Miner Bone Metab 2015;12:151.
- [4] Ben-Shlomo Y, Blom A, Boulton C, Brittain R, Clark E, Dawson-Bowling S, et al. National joint registry annual reports. The national joint registry 18th annual report. 2021.
- [5] Symptoms of Hip or Knee Replacement Failure. University of Utah; 2023.
- [6] Delaunay C, Hamadouche M, Girard J, Duhamel A. What are the causes for failures of primary hip arthroplasties in France? Clin Orthop Relat Res 2013;471:3863-9.
- [7] Shamshoon S, Thornley P, de Beer J. Profound trunnion wear resulting in femoral head-neck dissociation in total hip arthroplasty. Case Rep Orthop 2018;2018: 1534572.
- [8] Wight CM, Lanting B, Schemitsch EH. Evidence based recommendations for reducing head-neck taper connection fretting corrosion in hip replacement prostheses. Hip Int 2017;27:523-31.
- [9] Oskouei RH, Barati MR, Farhoudi H, Taylor M, Solomon LB. A new finding on the in-vivo crevice corrosion damage in a CoCrMo hip implant. Mater Sci Eng C Mater Biol Appl 2017;79:390-8.
- [10] Langton DJ, Sidaginamale R, Lord JK, Nargol AV, Joyce TJ. Taper junction failure in large-diameter metal-on-metal bearings. Bone Joint Res 2012;1:56-63.
- [11] Drummond J, Tran P, Fary C. Metal-on-metal hip arthroplasty: a review of adverse reactions and patient management. Journal of Functional Biomaterials 2015;6: 486-99.
- [12] Matharu VK, Matharu GS. Metal-on-metal hip replacements: implications for general practice. Br J Gen Pract 2017;67:544-5.
- [13] Eltit F, Wang Q, Wang R. Mechanisms of adverse local tissue reactions to hip implants. Front Bioeng Biotechnol 2019;7:176.
- [14] Cooper HJ, Urban RM, Wixson RL, Meneghini RM, Jacobs JJ. Adverse local tissue reaction arising from corrosion at the femoral neck-body junction in a dual-taper stem with a cobalt-chromium modular neck. J Bone Joint Surg Am 2013;95: 865-72.
- [15] Fallahnezhad K, Farhoudi H, Oskouei RH, Taylor M. Influence of geometry and materials on the axial and torsional strength of the head-neck taper junction in modular hip replacements: A finite element study. J Mech Behav Biomed Mater 2016;60:118-26.
- [16] Raji HY, Shelton JC. Prediction of taper performance using quasi static FE models: The influence of loading, taper clearance and trunnion length. J Biomed Mater Res B Appl Biomater 2019;107:138-48.
- [17] Hussenbocus S, Kosuge D, Solomon LB, Howie DW, Oskouei RH. Head-neck taper corrosion in hip arthroplasty. Biomed Res Int 2015;2015:758123.
- [18] Danoff JR, Longaray J, Rajaravivarma R, Gopalakrishnan A, Chen AF, Hozack WJ. Impaction force influences taper-trunnion stability in total hip arthroplasty. J Arthroplasty 2018;33:S270-4.
- [19] Ouellette ES, Mali SA, Kim J, Grostefon J, Gilbert JL. Design, material, and seating load effects on in vitro fretting corrosion performance of modular head-neck tapers. J Arthroplasty 2019;34:991-1002.
- [20] Hothi HS, Whittaker RK, Meswania JM, Blunn GW, Skinner JA, Hart AJ. Influence of stem type on material loss at the metal-on-metal pinnacle taper junction. Proc Inst Mech Eng H 2015;229:91-7.
- [21] Tan SC, Teeter MG, Del Balso C, Howard JL, Lanting BA. Effect of taper design on trunnionosis in metal on polyethylene total hip arthroplasty. J Arthroplasty 2015; 30:1269-72.
- [22] Dyrkacz RMR, Brandt JM, Morrison JB, O’ Brien ST, Ojo OA, Turgeon TR, et al. Finite element analysis of the head-neck taper interface of modular hip prostheses. Tribol Int 2015;91:206-13.
- [23] Gutmann C, Shaikh N, Shenoy BS, Shaymasunder Bhat N, Keni LG, K.N.C.. Wear estimation of hip implants with varying chamfer geometry at the trunnion junction: a finite element analysis. Biomed Phys Eng Express 2023;9:035004.
- [24] Del Balso C, Teeter MG, Tan SC, Howard JL, Lanting BA. Trunnionosis: does head size affect fretting and corrosion in total hip arthroplasty? J Arthroplasty 2016;31: 2332-6.
- [25] Dyrkacz RM, Brandt JM, Ojo OA, Turgeon TR, Wyss UP. The influence of head size on corrosion and fretting behaviour at the head-neck interface of artificial hip joints. J Arthroplasty 2013;28:1036-40.
- [26] Bishop N, Witt F, Pourzal R, Fischer A, Rütschi M, Michel M, et al. Wear patterns of taper connections in retrieved large diameter metal-on-metal bearings. J Orthop Res 2013;31:1116-22.
- [27] Morlock MM, Dickinson EC, Günther KP, Bünte D, Polster V. Head taper corrosion causing head bottoming out and consecutive gross stem taper failure in total hip arthroplasty. J Arthroplasty 2018;33:3581-90.
- [28] Soliman MM, Chowdhury MEH, Islam MT, Musharavati F, Nabil M, Hafizh M, et al. A review of biomaterials and associated performance metrics analysis in preclinical finite element model and in implementation stages for total hip implant system. Polymers 2022;14:4308.
- [29] Kluess D, Martin H, Mittelmeier W, Schmitz KP, Bader R. Influence of femoral head size on impingement, dislocation and stress distribution in total hip replacement. Med Eng Phys 2007;29:465-71.
- [30] Krull A, Morlock MM, Bishop NE. The influence of contamination and cleaning on the strength of modular head taper fixation in total hip arthroplasty. J Arthroplasty 2017;32:3200-5.
- [31] Bitter T, Khan I, Marriott T, Lovelady E, Verdonschot N, Janssen D. A combined experimental and finite element approach to analyse the fretting mechanism of the head-stem taper junction in total hip replacement. Proc Inst Mech Eng H 2017;231: 862-70.
- [32] English R, Ashkanfar A, Rothwell G. A computational approach to fretting wear prediction at the head-stem taper junction of total hip replacements. Wear 2015; 338-339:210-20.
- [33] Toh SMS, Ashkanfar A, English R, Rothwell G, Langton DJ, Joyce TJ. How does bicycling affect the longevity of total hip arthroplasty? A finite element wear analysis. J Mech Behav Biomed Mater 2023;139:105673.
- [34] Bergmann G, Bender A, Dymke J, Duda G, Damm P. Standardized loads acting in hip implants. PLoS One 2016;11:e0155612.
- [35] Soliman MM, Chowdhury MEH, Islam MT, Musharavati F, Mahmud S, Hafizh M, et al. Design and performance evaluation of a novel spiral head-stem trunnion for hip implants using finite element analysis. Materials 2023;16:1466.
- [36] Harms L, Kansen M. Cycling facts. Netherlands Institute for Transport Policy Analysis (KiM) 2018.
- [37] Sener IN, Eluru N, Bhat CR. Who are bicyclists? Why and how much are they bicycling? Transp Res Rec 2009;2134:63-72.
- [38] Messellek AC, Ould Ouali M, Amrouche A. Adaptive finite element simulation of fretting wear and fatigue in a taper junction of modular hip prosthesis. J Mech Behav Biomed Mater 2020;111:103993.
- [39] Fallahnezhad K, Farhoudi H, Oskouei RH, Taylor M. A finite element study on the mechanical response of the head-neck interface of hip implants under realistic forces and moments of daily activities: Part 2. J Mech Behav Biomed Mater 2018; 77:164-70.
- [40] English R, Ashkanfar A, Rothwell G. The effect of different assembly loads on taper junction fretting wear in total hip replacements. Tribol Int 2016;95:199-210.
- [41] Fallahnezhad K, Feyzi M, Hashemi R, Taylor M. The role of the assembly force in the tribocorrosion behaviour of hip implant head-neck junctions: an adaptive finite element approach. Bioengineering 2022.
- [42] Fallahnezhad K, Feyzi M, Ghadirinejad K, Hashemi R, Taylor M. Finite element based simulation of tribocorrosion at the head-neck junction of hip implants. Tribol Int 2022;165:107284.
- [43] Huiskes R, Verdonschot N, Nivbrant B. Migration, stem shape, and surface finish in cemented total hip arthroplasty. Clin Orthop Relat Res 1998:103-12.
- [44] McNamara BP, Cristofolini L, Toni A, Taylor D. Relationship between bone-prosthesis bonding and load transfer in total hip reconstruction. J Biomech 1997; 30:621-30.
- [45] Celik E, Alemdar F, Bati M, Dasdemir M, Buyukbayraktar O, K N C, et al. Mechanical Investigation for the Use of Polylactic Acid in Total Hip Arthroplasty Using FEM Analysis. 2022. p. 17-23.
- [46] Stolk J, Maher SA, Verdonschot N, Prendergast PJ, Huiskes R. Can finite element models detect clinically inferior cemented hip implants? Clin Orthop Relat Res 2003:138-50.
- [47] Tanner KE, Yettram AL, Loeffler M, Goodier WD, Freeman MA, Bonfield W. Is stem length important in uncemented endoprostheses? Med Eng Phys 1995;17:291-6.
- [48] Wang X, Zhang S. The geoelectric field coast effect: Results from two dimensional finite element method and analytic solutions. Alex Eng J 2023;77:525-36.
- [49] Khan MS, Memon MA, Khan I, Eldin SM. Finite element based direct and iterative approach to investigate a magneto-micropolar flow through a rectangular channel. Alex Eng J 2023;75:55-66.
- [50] Elshamy M, Crosby WA, Elhadary M. Crack detection of cantilever beam by natural frequency tracking using experimental and finite element analysis. Alex Eng J 2018;57:3755-66.
- [51] Schwerter K, Meyenberg A, Sander K, Layher F, Roth AJ. [15-Year Results Following Implantation of a Stem Type AML Hip Prosthesis.]. Zeitschrift fur Orthopadie und Unfallchirurgie 2013;151.
- [52] Engh Jr CA, Claus AM, Hopper Jr RH, Engh CA. Long-term results using the anatomic medullary locking hip prosthesis. Clinical Orthopaedics and Related Research® 2001;393:137-46.
- [53] AML hip system Design Rationale. Depuy Synthes, Johnson and Johnson.
- [54] Mueller U, Braun S, Schroeder S, Sonntag R, Kretzer JP. Same same but different? 12/14 stem and head tapers in total hip arthroplasty. J Arthroplasty 2017;32: 3191-9.
- [55] Wik TS, Enoksen C, Klaksvik J, Østbyhaug PO, Foss OA, Ludvigsen J, et al. In vitro testing of the deformation pattern and initial stability of a cementless stem coupled to an experimental femoral head, with increased offset and altered femoral neck angles. Proc Inst Mech Eng H 2011;225:797-808.
- [56] Malfroy Camine V, Rüdiger HA, Pioletti DP, Terrier A. Full-field measurement of micromotion around a cementless femoral stem using micro-CT imaging and radiopaque markers. J Biomech 2016;49:4002-8.
- [57] Griffiths JT, Roumeliotis L, Elson DW, Borton ZM, Cheung S, Stranks GJ. Long term performance of an uncemented, proximally hydroxyapatite coated, double tapered, titanium-alloy femoral stem: results from 1465 hips at 10 years minimum followup. J Arthroplasty 2021;36:616-22.
- [58] Matsuda K, Nakamura S, Matsushita T. A simple method to minimize limb-length discrepancy after hip arthroplasty. Acta Orthop 2006;77:375-9.
- [59] O’Brien S, Kernohan G, Fitzpatrick C, Hill J, Beverland D. Perception of imposed leg length inequality in normal subjects. Hip Int 2010;20:505-11.
- [60] Ohyama Y, Minoda Y, Masuda S, Sugama R, Ohta Y, Nakamura H. Is bone remodelling around fully hydroxyapatite-coated and tapered-wedge stems related to the stem fixation pattern? Eur J Orthop Surg Traumatol 2024;1-7.
- [61] Fink B, Morgan M, Schuster P. Reconstruction of the anatomy of the hip in total hip arthroplasty with two different kinds of stems. BMC Musculoskelet Disord 2022;23: 212.
- [62] DePuy Synthes- Hip Replacement Prosthesis & Femoral Stems.
- [63] Stryker- Hip Implants.
- [64] Bhawe AK, Shah KM, Somani S, Shenoy BS, Bhat NS, Zuber M, et al. Static structural analysis of the effect of change in femoral head sizes used in total hip arthroplasty using finite element method. Cogent Eng 2022;9:2027080.
- [65] Kladovasilakis N, Tsongas K, Tzetzis D. Finite element analysis of orthopedic hip implant with functionally graded bioinspired lattice structures. Biomimetics (Basel) 2020;5.
- [66] Hanada S, Masahashi N, Jung T-K, Yamada N, Yamako G, Itoi E. Fabrication of a high-performance hip prosthetic stem using β Ti-33.6Nb-4Sn. Journal of the Mechanical Behavior of Biomedical Materials 2014;30:140-9.
- [67] Yamako G, Janssen D, Hanada S, Anijs T, Ochiai K, Totoribe K, et al. Improving stress shielding following total hip arthroplasty by using a femoral stem made of β type Ti-33.6Nb-4Sn with a Young’s modulus gradation. J Biomech 2017;63: 135-43.
- [68] Lopes ESN, Contieri RJ, Button ST, Caram R. Femoral hip stem prosthesis made of graded elastic modulus metastable β Ti Alloy. Mater Des 2015;69:30-6.
- [69] Chiba D, Yamada N, Mori Y, Oyama M, Ohtsu S, Kuwahara Y, et al. Mid-term results of a new femoral prosthesis using Ti-Nb-Sn alloy with low Young’s modulus. BMC Musculoskelet Disord 2021;22:987.
- [70] Shaikh N, Shenoy BS, Bhat NS, Shetty S, K N C.. Wear estimation at the contact surfaces of oval shaped hip implants using finite element analysis. Cogent Eng 2023;10:2222985.
- [71] Hu CY, Yoon TR. Recent updates for biomaterials used in total hip arthroplasty. Biomater Res 2018;22:33.
- [72] Eliaz N. Corrosion of Metallic Biomaterials: A Review. Materials (Basel) 2019;12.
- [73] Corda JV, K N C, Bhat NS, Shetty S, Shenoy BS, Zuber M. Finite element analysis of elliptical shaped stem profile of hip prosthesis using dynamic loading conditions. Biomed Phys Eng Express 2023;9:065028.
- [74] Choroszynski MR, Choroszynski MR, Skrzypek SJ. Biomaterials for hip implants@ important considerations relating to the choice of materials. Bio-Algorithms and Med-Systems 2017;13:133-45.
- [75] Peltola E, Tiainen VM, Takakubo Y, Rajchel B, Sobiecki J, Konttinen YT, et al. Materials used for hip and knee implants. 2013. p. 178-218.
- [76] Singh SK, Tandon P. Heterogeneous modeling based prosthesis design with porosity and material variation. J Mech Behav Biomed Mater 2018;87:124-31.
- [77] Darwich A, Nazha H. Effect of coating materials on the fatigue behavior of hip implants: a three-dimensional finite element analysis. Journal of Applied and Computational Mechanics 2019;6.
- [78] Material Properties Database. MakeItFrom.com.
- [79] Orthoload 2023.
- [80] Schmalzried TP, Szuszczewicz ES, Northfield MR, Akizuki KH, Frankel RE, Belcher G, et al. Quantitative assessment of walking activity after total hip or knee replacement. J Bone Joint Surg Am 1998;80:54-9.
- [81] Donaldson FE, Coburn JC, Siegel KL. Total hip arthroplasty head-neck contact mechanics: a stochastic investigation of key parameters. J Biomech 2014;47: 1634-41.
- [82] Feyzi M, Fallahnezhad K, Taylor M, Hashemi R. A review on the finite element simulation of fretting wear and corrosion in the taper junction of hip replacement implants. Comput Biol Med 2021;130:104196.
- [83] Feyzi M, Fallahnezhad K, Taylor M, Hashemi R. The mechanics of head-neck taper junctions: What do we know from finite element analysis? J Mech Behav Biomed Mater 2021;116:104338.
- [84] Alkhatib SE, Tarlochan F, Mehboob H, Singh R, Kadirgama K, Harun W. Finite element study of functionally graded porous femoral stems incorporating bodycentered cubic structure. Artif Organs 2019;43:E152-64.
- [85] Alkhatib S, Mehboob H, F T. Finite element analysis of porous titanium alloy hip stem to evaluate the biomechanical performance during walking and stair climbing. J Bionic Eng 2019;16:1103-15.
- [86] Ansys 2021.
- [87] Corda J, K N C, Shenoy S, Shetty S, N S, Zuber M. Fatigue life evaluation of different hip implant designs using finite element analysis. Journal of Applied Engineering Science 2023;21:896-907.
- [88] Reginald J, M K, K N C, P D.. Static, dynamic, and fatigue life investigation of a hip prosthesis for walking gait using finite element analysis. Int J Model Simul 2023; 43:797-811.
- [89] Gutmann C, Shaikh N, Shenoy BS, Shaymasunder Bhat N, Keni LG, K NC. Wear estimation of hip implants with varying chamfer geometry at the trunnion junction: a finite element analysis. Biomed Phys Eng Express 2023;9.
- [90] Saikko V, Calonius O. An improved method of computing the wear factor for total hip prostheses involving the variation of relative motion and contact pressure with location on the bearing surface. J Biomech 2003;36:1819-27.
- [91] Atkinson JR, Dowson D, Isaac JH, Wroblewski BM. Laboratory wear tests and clinical observations of the penetration of femoral heads into acetabular cups in total replacement hip joints: III: The measurement of internal volume changes in explanted Charnley sockets after 2-16 years in vivo and the determination of wear factors. Wear 1985;104:225-44.
- [92] Zhang T, Harrison NM, McDonnell PF, McHugh PE, Leen SB. A finite element methodology for wear-fatigue analysis for modular hip implants. Tribol Int 2013; 65:113-27.
- [93] Wang A, Essner A, Klein R. Effect of contact stress on friction and wear of ultra-high molecular weight polyethylene in total hip replacement. Proc Inst Mech Eng H 2001;215:133-9.
- [94] Falkenberg A, Biller S, Morlock MM, Huber G. Micromotion at the head-stem taper junction of total hip prostheses is influenced by prosthesis design-, patient- and surgeon-related factors. J Biomech 2020;98:109424.
- [95] Ashkanfar A, Langton DJ, Joyce TJ. A large taper mismatch is one of the key factors behind high wear rates and failure at the taper junction of total hip replacements: A finite element wear analysis. J Mech Behav Biomed Mater 2017;69:257-66.
- [96] Siljander MP, Baker EA, Baker KC, Salisbury MR, Thor CC, Verner JJ. Fretting and corrosion damage in retrieved metal-on-polyethylene modular total hip arthroplasty systems: what is the importance of femoral head size? J Arthroplasty 2018;33:931-8.
- [97] Kurtz SM, Kocagöz SB, Hanzlik JA, Underwood RJ, Gilbert JL, MacDonald DW, et al. Do ceramic femoral heads reduce taper fretting corrosion in hip arthroplasty? A retrieval study. Clin Orthop Relat Res 2013;471:3270-82.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1bae7ff8-85e5-4639-a1c6-78d5acd5e2bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.