PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Growth kinetics of a silicon-modified aluminide coating on a TiNM-B1 intermetallic alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Kinetyka wzrostu warstwy aluminidkowej modyfikowanej krzemem na podłożu stopu na osnowie fazy międzymetalicznej TNM-B1
Języki publikacji
EN
Abstrakty
EN
TiAl-based intermetallic alloys are used as a structural material in high-temperature applications such as aircraft and turbine engines. To improve the mechanical properties of TiAl, it is often modified by adding other elements such as niobium or chromium. The one of disadvantages of TiAl alloys is not sufficient oxidation resistance. The pack cementation process is one well-known method of modifying TiAl, which involves coating the surface of the alloy with a special mixture containing silicon, to enrich it with this element. As a result of this process, Si-modified aluminide coating is formed, which exhibits improved resistance to high temperatures, making it ideal for use in the aerospace and turbine industries. The study was conducted on a substrate of one of the latest generation of TiAl alloys which we have not yet analyzed. The powder used in the pack cementation process consisted of 20 wt.% Si, 20 wt.% Al, 2 wt.% NH4Cl activator, and the rest Al2O3, as well as 40 wt.% Si, 40 wt.% Al, 1-2% NH4Cl activator, and the rest Al2O3 calculated for 100 g of powder. The process was carried out at a temperature of 950°C for 2, 4, and 6 hours. The following analyses were performed after the pack cementation process: scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) attachment for microanalysis, as well as X-ray diffraction (XRD). Test results indicated a coating structure typical of silicon-modified coatings including the presence of titanium silicides. It was found that increasing the silicon content causes a significant increase in coating thickness.
PL
TiAl to stop tytanu i aluminium, który jest wykorzystywany jako materiał konstrukcyjny w zastosowaniach wysokotemperaturowych, takich jak samoloty i silniki turbinowe. Aby poprawić właściwości mechaniczne TiAl, jest on często modyfikowany poprzez dodanie innych pierwiastków, takich jak krzem. Proces cementowania pakietowego jest jedną z metod modyfikacji TiAl, która polega na pokryciu powierzchni stopu specjalną mieszanką zawierającą krzem, w celu wzbogacenia go w ten pierwiastek. W wyniku tego procesu powstaje TiAl modyfikowany Si, który wykazuje lepsze właściwości mechaniczne i odporność na wysokie temperatury, dzięki czemu idealnie nadaje się do stosowania w przemyśle lotniczym i turbinowym. Proszek użyty w procesie cementowania pakietowego składał się z 20 % wag. Si, 20 % wag. Al, 1-2% aktywatora NH4Cl i reszty Al2O3, a także 40 % wag. Si, 40 % wag. Al, 2% aktywatora NH4Cl i reszty Al2O3 w przeliczeniu na 100 g proszku. Proces prowadzono w temperaturze 950°C przez 2, 4 i 6 godzin. Po procesie osadzania przeprowadzono badania za pomocą skaningowego mikroskopu elektronowego, analizę EDS, a także dyfrakcję rentgenowską (XRD). Wyniki badań wykazały strukturę powłoki typową dla powłok modyfikowanych krzemem, w tym obecność krzemków tytanu. Stwierdzono, że zwiększenie zawartości krzemu oraz czasu procesu powoduje znaczny wzrost grubości powłoki.
Rocznik
Strony
79--87
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Rzeszow University of Technology
autor
  • Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Rzeszow University of Technology
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology
Bibliografia
  • 1. Bauer, P. P., Laska, N., & Swadźba, R. (2021) Increasing the oxidation resistance of γ-TiAl by applying a magnetron sputtered aluminum and silicon based coating. Intermetallics, 133, Article 107177. https://doi.org/10.1016/j.intermet.2021.107177
  • 2. Bobzin, K., Brögelmann, T., Kalscheuer, C., & Liang, T. (2018). Al-Si and Al-Si-Y coatings deposited by HS-PVD for the oxidation protection of γ-TiAl. Surface and Coatings Technology, 350, 587–595. https://doi.org/10.1016/j.surfcoat.2018.06.074
  • 3. Dai, J., Zhang, H., Sun, C., Li, S., Chen, C., & Yang, Y. (2020). The effect of Nb and Si on the hot corrosion behaviors of TiAl coatings on a Ti-6Al-4V alloy. Corrosion Science, 168, Article 108578. https://doi.org/10.1016/j.corsci.2020.108578
  • 4. De Farias Azevedo, C. R., & Flower, H. M. (1999). Microstructure and phase relationships in Ti-Al-Si system. Materials Science and Technology, 15(8), 869–877. https://doi.org/10.1179/026708399101506661
  • 5. Genc, O., & Unal, R. (2022) Development of gamma titanium aluminide (γ-TiAl) alloys: A review. Journal of Alloys and Compounds, 929, Article 167262. https://doi.org/10.1016/j.jallcom.2022.167262
  • 6. Goral, M., Moskal, G., Swadzba, L., & Tetsui, T. (2007). Si-modified aluminide coating deposited on TiAlNb alloy by slurry method. Journal of Achievements in Materials and Manufacturing Engineering, 21(1), 75–78.
  • 7. Goral, M., Moskal, G., Swadźba, L., & Hetmańczyk, M. (2011a) The influence of silicon amount on structure of Si modified aluminide coating deposited on Ti46Al7Nb alloy by slurry method. Key Engineering Materials, 465, 251–254. https://doi.org/10.4028/www.scientific.net/KEM.465.251
  • 8. Goral, M., Swadzba, L., Moskal, G., Jarczyk, G., Aguilar, J. (2011b). Diffusion aluminide coatings for TiAl intermetallic turbine blades. Intermetallics, 19(5), 744–747. https://doi.org/10.1016/j.intermet.2010.12.015
  • 9. Góral, M., Monteiro, P. C., Sosnowy, P., Woźniak, M., Kubaszek, T., & Kościelniak, B. (2022). The formation of Si-aluminide coating formed by plasma spraying and subsequent diffusion annealing on Ti-Al-7Nb intermetallic alloy. Archives of Materials Science and Engineering, 117(2), 49–56. https://doi.org/10.5604/01.3001.0016.1775
  • 10. Jiang, H. ren, Wang, Z. lei, Ma, W. shuai, Feng, X. ran, Dong, Z. qiang, Zhang L., & Liu Y. (2008). Effects of Nb and Si on high temperature oxidation of TiAl. Transactions of Nonferrous Metals Society of China, 18(3), 512–517. https://doi.org/10.1016/S1003-6326(08)60090-4
  • 11. Kim, S. W., Wang, P., Oh, M. H., Wee, D. M., & Kumar, K. S. (2004). Mechanical properties of Si- and C-doped directionally solidified TiAl–Nb alloys. Intermetallics, 12(5), 499–509. https://doi.org/10.1016/j.intermet.2004.01.004
  • 12. Kim, Y. W., & Kim, S. L. (2014). Effects of microstructure and C and Si additions on elevated temperature creep and fatigue of gamma TiAl alloys. Intermetallics, 53, 92–101.https://doi.org/10.1016/j.intermet.2014.04.006
  • 13. Knaislová, A., Novák, P., Cabibbo, M., Průša, F., Paoletti, C., Jaworska, L., & Vojtěch, D. (2018). Combination of reaction synthesis and Spark Plasma Sintering in production of Ti-Al-Si alloys. Journal of Alloys and Compounds, 752, 317–326.https://doi.org/10.1016/j.jallcom.2018.04.187
  • 14. Knaislová, A., Šimůnková, V., Novák, P., Průša, F., Cabibbo, M., Jaworska, L., & Vojtěch, D. (2021). Effect of alloying elements on the properties of Ti-Al-Si alloys prepared by powder metallurgy. Journal of Alloys and Compounds, 868, Article 159251. https://doi.org/10.1016/j.jallcom.2021.159251
  • 15. Li, X. Y., Taniguchi, S., Matsunaga, Y., Nakagawa, K., & Fujita, K. (2003). Influence of siliconizing on the oxidation behavior of a γ-TiAl based alloy. Intermetallics, 11(2), 143–150. https://doi.org/10.1016/S0966-9795(02)00193-0
  • 16. Ma, X. X., Liang, W., Zhao, X. G., & Zhang, F. (2006). Effect of Al2O3 layer on improving high-temperature oxidation resistance of siliconized TiAl-based alloy. Materials Letters, 60(13–14), 1651–1653. https://doi.org/10.1016/j.matlet.2005.11.086
  • 17. Maki, K., Shioda, M., Sayashi, M., Shimizu, T., & Isobe, S. (1992). Effect of silicon and niobium on oxidation resistance of TiAl intermetallics. In S. H. Whang, D. P. Pope, & C. T. Liu (Eds.), High Temperature Aluminides and Intermetallics (pp. 591–596). Elsevier Ltd. https://doi.org/10.1016/B978-1-85166-822-9.50093-5
  • 18. Moskal, G., Migas, D., Mendala, B., Kałamarz, P., Mikuśkiewicz, M., Iqbal, A., Jucha, S., & Góral, M. (2021). The Si influence on the microstructure and oxidation resistance of Ti-Al slurry coatings on Ti-48Al-2Cr-2Nb alloy. Materials Research Bulletin, 141, Article 111336. https://doi.org/10.1016/j.materresbull.2021.111336
  • 19. Pflumm, R., Friedle, S., & Schütze, M. (2015). Oxidation protection of γ-TiAl-based alloys - A review. Intermetallics, 56, 1–14. https://doi.org/10.1016/j.intermet.2014.08.002
  • 20. Rubacha, K., Godlewska, E., Zawadzka, K., & Dąbrowa, J. (2022). Formation of silicide layers on a Ti-46Al-8Ta alloy in pack cementation and diffusion couple experiments. Surface and Coatings Technology, 429, Article 127860. https://doi.org/10.1016/j.surfcoat.2021.127860
  • 21. Sun, T., Guo, Z., Cao, J., Liang, Y., & Lin, J. (2023). Isothermal oxidation behavior of high-Nb-containing TiAl alloys doped with W, B, Y, and C/Si. Corrosion Science, 213, Article 110980.https://doi.org/10.1016/j.corsci.2023.110980
  • 22. Wang, Q., Wu, W. Y., Jiang, M. Y., Cao, F. H., Wu, H. X., Sun, D. B., Yu, H. Y., & Wu L. K. (2020). Improved oxidation performance of TiAl alloy by a novel Al–Si composite coating. Surface and Coatings Technology, 381, Article 125126. https://doi.org/10.1016/j.surfcoat.2019.125126
  • 23. Woźniak, M., Góral, M., & Kościelniak B. (2023). The formation of Al-Si aluminide coatings by pack cementation method on TNM-B1 intermetallic alloy. Advances in Mechanical and Materials Engineering, 40, 79–86. https://doi.org/10.7862/rm.2023.9
  • 24. Wu, L. K., Wu, J. J., Wu, W. Y., Hou, G. Y., Cao, H. Z., Tang, Y. P., Zhang, H., B., & Zheng G.Q. (2019). High temperature oxidation resistance of γ-TiAl alloy with pack aluminizing and electrodeposited SiO2 composite coating. Corrosion Science, 146, 18–27. https://doi.org/10.1016/j.corsci.2018.10.031
  • 25. Wu, Z., Kou, H., Chen, N., Xi, Z., Fan, J., Tang, B., & Li, J. (2022). Recent developments in cold dwell fatigue of titanium alloys for aero-engine applications: a review. Journal of Materials Research and Technology, 20, 469–484. https://doi.org/10.1016/j.jmrt.2022.07.094
  • 26. Xiang, Z. D., Rose, S. R., & Datta, P.K. (2003). Codeposition of Al and Si to form oxidation-resistant coatings on γ-TiAl by the pack cementation process. Materials Chemistry and Physics, 80(2), 482–489. https://doi.org/10.1016/S0254-0584(02)00551-5
  • 27. Xiong, H. P., Mao, W., Xie, Y. H., Ma, W. L., Chen, Y. F., Li, X. H., Li, J. P., & Cheng, Y. Y. (2004). Liquid-phase siliconizing by Al-Si alloys at the surface of a TiAl-based alloy and improvement in oxidation resistance. Acta Materialia, 52(9), 2605–2620. https://doi.org/10.1016/j.actamat.2004.02.008
  • 28. Zhang, K., Xin, L., Lu, Y., Cheng, Y., Wang, X., Zhu, S., & Wang, F. (2021). Improving oxidation resistance of γ-TiAl based alloy by depositing TiAlSiN coating: Effects of silicon. Corrosion Science, 179, Article 109151. https://doi.org/10.1016/j.corsci.2020.109151
  • 29. Zhou, C., Xu, H., Gong, S., & Kim, K. Y. (2003) A study of aluminide coatings on TiAl alloys by the pack cementation method. Materials Science and Engineering: A, 341(1–2), 169-173. https://doi.org/10.1016/S0921-5093(02)00197-1
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ba8b27b-d646-45d0-872a-7637c79b9633
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.