Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Austenitic nodular cast iron is a versatile material that offers a unique combination of properties, making it suitable for use in a wide range of applications where high strength, ductility, toughness, corrosion resistance and wear resistance are required. This material is commonly used in a variety of applications in the chemical and petrochemical industries, in the automotive and aerospace industries, as well as in marine and offshore applications. For the experiments, one of the most common austenitic nodular cast irons (alloyed with nickel and manganese) was chosen. The aim of this paper is to evaluate the corrosion resistance of this austenitic nodular cast iron and compare it with other (non-austenitic) types of nodular cast iron (SiMo- and SiCu-type). Corrosion resistance was determined by an exposure immersion test and an electrochemical potentiodynamic polarization test. Both tests were performed in a 3.5% NaCl solution (to simulate seawater) at ambient temperature. Experimental results prove that austenitic NiMn-nodular cast iron has a higher corrosion resistance than SiMo- and SiCu-nodular cast iron. Moreover, austenitic nodular cast iron has better plastic properties (higher elongation and absorbed energy) but worse strength and fatigue properties (lower tensile strength, hardness and fatigue limit) than the other types of nodular cast iron.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1115--1122
Opis fizyczny
Bibliogr. 29 poz., fot., rys., tab.
Twórcy
autor
- University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Žilina, Slovakia
autor
- University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Žilina, Slovakia
autor
- University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Žilina, Slovakia
autor
- Brno University of Technology, Faculty of Mechanical Engineering, Department of Foundry Engineering, Brno, Czech Republic
Bibliografia
- [1] K. Röhrig, Konstruieren + Giessen, 29 (2), 2-33 (2004).
- [2] Ch. Bartels, R. Gerhards, H. Hanselka, K. Herfurth, H. Kaufmann, W. Kleinkröger, M. Lampic, H. Löblich, W. Menk, G. Pusch, T. Schmidt, K. H. Schütt, P. Tölke, E. P. Warnke, Konstruieren + Giessen 32 (2), 1-101 (2007).
- [3] S. Franke, Giesserei-Lexikon, Schiele & Schön, Berlin, Germany (2019).
- [4] Properties and applications of Ni-resist and ductile Ni-resist alloys. A practical guide to the use of nickel-containing alloys, No. 11018, Nickel Institute, 1-62 (2022).
- [5] V. Kaňa, Slévárenství 65 (1-2), 6-11 (2017).
- [6] Corrosion resistance of the austenitic chromium-nickel stainless steels in atmospheric environments. A practical guide to the use of nickel-containing alloys, No. 318, Nickel Institute, 1-13 (2022).
- [7] Corrosion resistance of the austenitic chromium-nickel stainless steels in chemical environments. A practical guide to the use of nickel-containing alloys, No. 2828, Nickel Institute, 1-19 (2022).
- [8] K. Röhrig, Konstruieren + Giessen 18 (3), 4-29 (1993).
- [9] T. Liptáková, Point corrosion of stainless steels, ESIS, Žilina (2009).
- [10] T. Liptáková, D. Kajánek, F. Pastorek, V. Zatkalíková, Corrosion properties of selected metals under conditions of their use, EDIS, Žilina (2022).
- [11] J. Dziková, D. Kajánek, F. Nový, F. Pastorek, Corrosion of metallic materials, EDIS, Žilina (2021).
- [12] Nickel SG-iron - engineering properties. A practical guide to the use of nickel-containing alloys, No. 4077, Nickel Institute (2022).
- [13] H.M. Shalaby, S. Attari, W.T. Riad, V.K. Gouda, Corrosion 48 (3), 206-217 (1992).
- [14] B. Todd, P. A. Lovett, Marine engineering practice, Vol. 1, Institute of Marine Engineers (1983).
- [15] J. C. Rolands, B. Angell, Corrosion for marine and offshore engineers. Institute of Marine Engineering, Science & Technology (2020).
- [16] ASM Handbook, Vol. 13A Corrosion: Fundamentals, testing and protection, ASM International (2003).
- [17] ASM Handbook, Vol. 13B Corrosion: Materials, Corrosion of cast irons, ASM International (2005).
- [18] ASM Handbook, Vol. 1A Cast iron science and technology, Corrosion of cast irons. ASM International (2017).
- [19] M. Schütze, M. Roche, R. Bender, Corrosion resistance of steels, nickel alloys, and zinc in aqueous media: Waste water, seawater, drinking water, high-purity water. Wiley (2015).
- [20] Ductile Iron Handbook, American Foundrymen’s Society, Des Plaines, Illinois (1993).
- [21] M. Stawarz, P.M. Nuckowski, Materials 15 (9), 3225 (2022).
- [22] A. Vaško, M. Uhríčik, V. Kaňa, Archives of Metallurgy and Materials 68 (2), 563-569 (2023).
- [23] R. Baboian, Corrosion tests and standards: Application and interpretation. ASTM, Philadelphia (2005).
- [24] B. Hadzima, T. Liptáková, Basics of electrochemical corrosion of metals. EDIS, Žilina (2008).
- [25] R.W. Revie, H.H. Uhlig, Corrosion and corrosion control: An introduction to corrosion science and engineering. John Wiley & Sons, New Jersey (2008).
- [26] P. Pedeferri, Corrosion science and engineering, Springer (2018).
- [27] A. Vaško, V. Zatkalíková, V. Kaňa, CzOTO 2020, 2 (1), 191-198 (2020).
- [28] P. Skočovský, A. Vaško, Quantitative evaluation of structure of cast irons. EDIS, Žilina (2007).
- [29] P. Kopas, M. Vaško, M. Handrik, Applied Mechanics and Materials 474, 285-290 (2014).
Uwagi
The research has been supported by the Culture and Educational Grant Agency of Ministry of Education, Science, Research and Sport of Slovak Republic, grant projects KEGA No. 009ŽU-4/2023 and 004ŽU-4/2023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ba2f21e-6d1e-4e55-a691-027446a49d81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.