PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Melanoma skin cancer and nevus mole classification using intensity value estimation with convolutional neural network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Melanoma skin cancer is one of the most dangerous and life-threatening cancer. Exposure to ultraviolet rays may damage the skin cell's DNA, which can causes melanoma skin cancer. However, detecting and classifying melanoma and nevus moles at their immature stages is difficult. In this work, an automatic deep-learning system has been developed based on intensity value estimation with a convolutional neural network model (CNN) for detecting and classifying melanoma and nevus moles more accurately. Since intensity levels are the most distinctive features for identifying objects or regions of interest, high-intensity pixel values have been selected from extracted lesion images. Incorporating those high-intensity features into CNN improves the overall performance of the proposed model than the state-of-the-art methods for detecting melanoma skin cancer. To evaluate the system, we used five-fold cross-validation. The experimental results showed that superior percentages of accuracy (92.58%), sensitivity (93.76%), specificity (91.56%), and precision (90.68%) were achieved.
Wydawca
Czasopismo
Rocznik
Tom
Strony
277--296
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Department of Computer Science and Engineering, Dhaka University of Engineering &Technology, Gazipur-1707, Bangladesh
  • Department of Computer Science and Engineering, Dhaka University of Engineering &Technology, Gazipur-1707, Bangladesh
Bibliografia
  • [1] Adegun A., Viriri S.: An Enhanced Deep Learning Framework for Skin Lesions Segmentation. In: International Conference on Computational Collective Intelligence, pp. 414–425, Springer, 2019.
  • [2] Agilandeeswari L., Sagar M.T., Keerthana N.: Skin Lesion Detection using Texture Based Segmentation and Classification by Convolutional Neural Networks, International Journal of Innovative Technology and Exploring Engineering, vol. 9(2), pp. 2117–2121, 2019. doi: 10.35940/ijitee.B7085.129219.
  • [3] Al-Masni M.A., Al-Antari M.A., Choi M.T., Han S.M., Kim T.S.: Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks, Computer Methods and Programs in Biomedicine, vol. 162, pp. 221–231, 2018.
  • [4] American Cancer Society: Melanoma Warning Signs, https : / /www.skincancer.org / skin-cancer-information / melanoma / melanoma-warning-signs-and-images/, 2021.
  • [5] American Cancer Society: Key Statistics for Melanoma Skin Cancer, https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics/, 2022.
  • [6] Argenziano G., Fabbrocini G., Carli P., De Giorgi V., Sammarco E., Delfino M.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skinlesions: comparison of the ABCD rule of dermatoscopy and a new 7-pointchecklist based on pattern analysis, Archives of Dermatology, vol. 134(12),pp. 1563–1570, 1998.
  • [7] Baldi S., Michailidis I., Ntampasi V., Kosmatopoulos E.B., Papamichail I., Papa-georgiou M.: Simulation-based synthesis for approximately optimal urban traffic light management. In: 2015 American Control Conference (ACC), pp. 868–873,IEEE, 2015.
  • [8] Bora D.J.: Importance of Image Enhancement Techniques in Color Image Segmentation : A Comprehensive and Comparative Study, arXiv, 2017. https://arxiv.org/abs/1708.05081.
  • [9] Byrd A.L., Belkaid Y., Segre J.A.: The human skin microbiome, Nature Reviews Microbiology, vol. 16(3), pp. 143–155, 2018.
  • [10] Cadık M.: Perceptual evaluation of color-to-grayscale image conversions. In: Computer Graphics Forum, vol. 27, pp. 1745–1754, Wiley Online Library, 2008.
  • [11] Dong H., Farid F.: A Deep learning based patient care application for skin cancerdetection, Research Square, 2022. doi: 10.21203/rs.3.rs-1582255/v1.
  • [12] Eltayef K., Li Y., Liu X.: Detection of melanoma skin cancer in dermoscopyimages. In: Journal of Physics: Conference Series, vol. 787, p. 012034, IOPPublishing, 2017.
  • [13] Garg R., Maheshwari S., Shukla A.: Decision Support System for Detection and Classification of Skin Cancer using CNN, arXiv preprint arXiv:191203798, 2019.
  • [14] Giotis I., Molders N., Land S., Biehl M., Jonkman M.F., Petkov N.: MED-NODE:a computer-assisted melanoma diagnosis system using non-dermoscopic images, Expert Systems with Applications, vol. 42(19), pp. 6578–6585, 2015.
  • [15] Gogul I., Kumar V.S.: Flower species recognition system using convolution neuralnetworks and transfer learning. In:2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN), pp. 1–6, 2017.
  • [16] Guyon I.: A scaling law for the validation-set training-set size ratio, AT&T Bell Laboratories, vol. 1(11), 1997.
  • [17] Haenssle H.A., Fink C., Schneiderbauer R., Toberer F., Buhl T., Blum A., Kalloo A.,et al.: Man against machine: diagnostic performance of a deep learningconvolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists, Annals of Oncology, vol. 29(8), pp. 1836–1842, 2018.
  • [18] Islam R., Imran S., Ashikuzzaman M., Khan M.M.A.: Detection and Classification of Brain Tumor Based on Multilevel Segmentation with Convolutional Neural Network, Journal of Biomedical Science and Engineering, vol. 13(4),pp. 45–53, 2020.
  • [19] Jaya V., Gopikakumari R.: IEM: a new image enhancement metric for contrastand sharpness measurements, International Journal of Computer Applications,vol. 79(9), 2013.
  • [20] Jemal A., Siegel R., Xu J., Ward E.: Cancer Statistics, 2010,CA: A CancerJournal for Clinicians, vol. 60(5), pp. 277–300, 2010. doi: 10.3322/caac.20073.
  • [21] Jianu S.R.S., Ichim L., Popescu D.: Automatic diagnosis of skin cancer usingneural networks. In: 2019 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE), pp. 1–4, IEEE, 2019.
  • [22] Kadampur M.A., Al Riyaee S.: Skin cancer detection: Applying a deep learningbased model driven architecture in the cloud for classifying dermal cell images, Informatics in Medicine Unlocked, vol. 18, 100282, 2020.
  • [23] Kanan C., Cottrell G.W.: Color-to-grayscale: does the method matter in image recognition?, PloS one, vol. 7(1), e29740, 2012.
  • [24] Kassani S.H., Kassani P.H.: A comparative study of deep learning architectureson melanoma detection, Tissue and Cell, vol. 58, pp. 76–83, 2019.
  • [25] Khan M.Q., Hussain A., Rehman S.U., Khan U., Maqsood M., Mehmood K.,Khan M.A.: Classification of melanoma and nevus in digital images for diagnosisof skin cancer, IEEE Access, vol. 7, pp. 90132–90144, 2019.
  • [26] Koundal D., Sharma B.: Advanced neutrosophic set-based ultrasound image analysis. In: Neutrosophic Set in Medical Image Analysis, pp. 51–73, Elsevier, 2019.
  • [27] Lakshminarayanan A.R., Bhuvaneshwari R., Bhuvaneshwari S., Parthasarathy S., Jeganathan S., Sagayam K.M.:Skin Cancer Prediction Using Machine Learning Algorithms. In: Artificial Intelligence and Technologies, Springer,pp. 303–310, 2022.
  • [28] Maiti A., Chatterjee B.: Improving detection of Melanoma and Naevus with deepneural networks, Multimedia Tools and Applications, pp. 1–20, 2019.
  • [29] Mukherjee S., Adhikari A., Roy M.: Malignant Melanoma Detection Using MultiLayer Perceptron with Optimized Network Parameter Selection by PSO. In: Contemporary Advances in Innovative and Applicable Information Technology, pp. 101–109, Springer, 2019.
  • [30] Mukherjee S., Adhikari A., Roy M.: Malignant melanoma detection using multilayer preceptron with visually imperceptible features and PCA components from MED-NODE dataset, International Journal of Medical Engineering and Informatics, vol. 12(2), pp. 151–168, 2020.
  • [31] Nasr-Esfahani E., Samavi S., Karimi N., Soroushmehr S.M.R., Jafari M.H., Ward K., Najarian K.: Melanoma detection by analysis of clinical images using convolutional neural network. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1373–1376,IEEE, 2016.
  • [32] Peram M.R., Jalalpure S., Kumbar V., Patil S., Joshi S., Bhat K., Diwan P.: Factorial design based curcumin ethosomal nanocarriers for the skin cancer delivery: in vitro evaluation, Journal of Liposome Research, vol. 29(3), pp. 291–311, 2019.
  • [33] Poynton C.: Frequently asked questions about color, Retrieved June, vol. 19(449),2004, 1997.
  • [34] Refianti R., Mutiara A.B., Priyandini R.P.: Classification of Melanoma Skin Cancer using Convolutional Neural Network, International Journal of Advanced Computer Science and Applications, vol. 10(3), pp. 409–417, 2019. doi: 10.14569/IJACSA.2019.0100353.
  • [35] Salih O., Viriri S.: Skin lesion segmentation using local binary convolution-deconvolution a rchitecture, Image Analysis & Stereology , vol. 39(3),pp. 169–185, 2020.
  • [36] Shorten C., Khoshgoftaar T.M.: A survey on image data augmentation for deeplearning, Journal of Big Data, vol. 6(1), pp. 1–48, 2019.
  • [37] Silpa S.R., Chidvila V.: A review on skin cancer, International Research Journal of Pharmacy, vol. 4(8), pp. 83–88, 2013.
  • [38] ̈Unver H.M., Ayan E.: Skin lesion segmentation in dermoscopic images with combination of YOLO and GrabCut algorithm, Diagnostics, vol. 9(3), 72, 2019.
  • [39] Vijayalakshmi M.: Melanoma Skin Cancer Detection using Image Processingand Machine Learning, International Journal of Trend in Scientific Research and Development (IJTSRD), vol. 3(4), pp. 780–784, 2019.
  • [40] World Health Organization (WHO): Radiation: Ultraviolet (UV) radiation andskin cancer, https://www.who.int/uv/faq/skincancer/en/index1.html, 2022.
  • [41] Yadav A.K., Roy R., Kumar V., Kumar A.P.: Survey on content-based imageretrieval and texture analysis with applications, International Journal of Signal Processing, Image Processing and Pattern Recognition, vol. 7(6), pp. 41–50, 2014.
  • [42] Zaman K., Bangash J.I., Maghdid S.S., Hassan S., Afridi H., Zohaib M.: Analysisand Classification of Skin Cancer Images using Convolutional Neural Network Approach. In: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1–8, IEEE, 2020.
  • [43] Zaman K., Maghdid S.S.: Medical Images Classification for Skin Cancer Using Convolutional Neural Network Algorithms, Advances in Mechanics, vol. 9(3),pp. 526–541, 2021.
  • [44] Zheng C., Sun D.W.: Image Segmentation Techniques. In: Computer VisionTechnology for Food Quality Evaluation, pp. 37–56, Elsevier, 2008. doi: 10.1016/b978-012373642-0.50005-3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ba14eee-9411-4734-a174-89dc8afbba6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.