Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper investigates the approaches to an improvement of classifiers quality through the application of a domain knowledge. The expertise may be utilizable on several levels of decision algorithms such as: feature extraction, feature selection, a definition of temporal patterns used in an approximation of the concepts, especially of the complex spatio-temporal ones, an assignment of an object to the concept and a measurement of the objects similarity. The domain knowledge incorporation results then in the reduction of the size of searched spaces. The work constitutes an overview of classifier building methods efficiently utilizing the expertise, worked out latterly by Professor Andrzej Skowron research group. The methods using domain knowledge intended to enhance the quality of classic classifiers, to identify the behavioral patterns and for automatic planning are discussed. Finally it answers a question whether the methods satisfy the hopes vested in them and indicates the directions for future development.
Wydawca
Czasopismo
Rocznik
Tom
Strony
495--511
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
- Institute of Computer Science, University of Rzeszów, Pigonia 1, 35-959 Rzeszów, Poland
autor
- Institute of Computer Science, University of Rzeszów, Pigonia 1, 35-959 Rzeszów, Poland
autor
- Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
Bibliografia
- [1] Adam, N. R., Janeja, V. P., Atluri, V.: Neighborhood based detection of anomalies in high dimensional spatiotemporal sensor datasets, in: Proc. of the 2004 ACM symposium on Applied computing (SAC’04), Nicosia, Cyprus, ACM Press, New York, USA, 2004, 576-583.
- [2] Bar-Yam, Y.: Dynamics of Complex Systems, Addison Wesley, New York, USA, 1997.
- [3] Bazan, J. G.: Hierarchical classifiers for complex spatio-temporal concepts, Transactions on Rough Sets, IX, LNCS 5390, 2008, 474-750.
- [4] Bazan, J. G., Bazan-Socha, S., Buregwa-Czuma, S., Pardel, P. W., Skowron, A., Sokolowska, B.: Classifiers Based on Data Sets and Domain Knowledge: A Rough Set Approach, in: Rough Sets and Intelligent Systems - Professor Zdzislaw Pawlak in Memoriam. Intelligent Systems Reference Library (A. Skowron, , Z. Suraj, Eds.), vol. 43, Springer-Verlag, Berlin Heidelberg, 2013, 93-136.
- [5] Bazan, J. G., Bazan-Socha, S., Buregwa-Czuma, S., Pardel, P. W., Sokołowska, B.: Predicting the presence of serious coronary artery disease based on 24 hour Holter ECG monitoring, in: Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS’2012) (M. Ganzha, L. Maciaszek, M. Paprzycki, Eds.), Wroclaw, Poland, 2012, 279-286.
- [6] Bazan, J. G., Bazan-Socha, S., Buregwa-Czuma, S., Pardel, P. W., Sokolowska, B.: Prediction of coronary arteriosclerosis in stable coronary heart disease, in: Advances in Computational Intelligence, vol. 298 of Communications in Computer and Information Science (S. Greco, B. Bouchon-Meunier, G. Coletti, M. Fedrizzi, B. Matarazzo, and R. R. Yager, Eds.), Springer, 2012, 550-559.
- [7] Bazan, J. G., Kruczek, P., Bazan-Socha, S., Skowron, A., Pietrzyk, J.: Rough set approach to behavioral pattern identification, Fundamenta Informaticae, 75(1-4), 2007, 27-47.
- [8] Bazan, J. G., Nguyen, H. S., Nguyen, S. H., Synak, P., Wróblewski, J.: Rough set algorithms in classification problems, in: Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems (L. Polkowski, T. Y. Lin, S. Tsumoto, Eds.), Springer-Verlag/Physica-Verlag, Heidelberg, Germany, Studies in Fuzziness and Soft Computing, vol. 56, 2000, 49-88.
- [9] Brzezinski, D., Stefanowski, J.: Accuracy Updated Ensemble for Data Streams with Concept Drift, in: Proceedings of the 6th International Conference on Hybrid Artificial Intelligence Systems (HAIS 2011), Part II. LNCS (LNAI), vol. 6679 (Corchado, E., Kurzynski, M., Wozniak, M., Eds.), Springer, 2011, 155-163.
- [10] Desai, A.: Adaptive complex enterprises, Communications ACM, 5(48), 2005, 32-35.
- [11] Domingos, P.: Toward knowledge-rich data mining, Data Mining and Knowledge Discovery, 1(15), 2007, 21-28.
- [12] Douzal-Chouakria, A., Amblard, C.: Classification trees for time series, Pattern Recognition, vol. 45, issue 3, 2011, 1076-1091.
- [13] Gabbay, D. M., Hogger, C. J., J. A. R. (eds.): Handbook of Logic in Artificial Intelligence and Logic Programming, vol. I-V, Oxford University Press, New York, USA, 1994.
- [14] Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice, Elsevier, Morgan Kaufmann, CA, 2004.
- [15] Gora, G., Bazan, J. G., Kruczek, P., Bazan-Socha, S., Skowron, A., Pietrzyk,J.: Case-based planning of treatment of infants with respiratory failure, Fundamenta Informaticae, 85(1-4), 2008,155-172.
- [16] Guarino, N.: Formal ontology and information systems, in: Proc. of the First International Conference on Formal Ontology in Information Systems (FOIS’98), June 6-8, Trento, Italy, IOS Press, 1998, 3-15.
- [17] Hoen, P. J., Tuyls, K., Panait, L., Luke, S., Poutre, J. A. L.: Overview of cooperative and competitive multiagent learning, in: Learning and Adaption in Multi-Agent Systems: First International Workshop (LAMAS 2005) (K. Tuyls, P. J. Hoen, K. Verbeeck, S. Luke, Eds.), Utrecht, The Netherlands, 2005, 1-46.
- [18] Jankowski, A., Skowron, A.: Wisdom technology: A rough-granular approach, Lectures Notes in Computer Science, 5070, 2009, 3-41.
- [19] Kuncheva, L., I.: Classifier ensembles for detecting concept change in streaming data: Overview and perspectives, in: Proceedings 2nd Workshop SUEMA 2008 (ECAI2008), Patras, Greece, 2008, pp. 5-10.
- [20] Liu, J., Jin, X., Tsui, K.: Autonomy Oriented Computing: From Problem Solving to Complex Systems Modeling, Kluwer/Springer, Heidelberg, 2005.
- [21] Mahoney,M., Chan,P.K.: Learning rules for anomaly detection of hostile network traffic, in: Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03), December 19-22, Melbourne, Florida, USA, IEEE Computer Society, 2003, 601-604.
- [22] Mendelson, E.: Introduction to Mathematical Logic, International Thomson Publishing, 1987.
- [23] Michalski, R. et al. (Eds.): Machine Learning, vol. I-IV, Morgan Kaufmann, Los Altos, 1983, 1986, 1990, 1994.
- [24] Michie, D., Spiegelhalter, D. J., Taylor, C. C.: Machine learning, neural and statistical classification, Ellis Horwood Limited, England, 1994.
- [25] Mitchel, T. M.: Machine Learning, McGraw-Hill, Boston, MA, 1997.
- [26] Nguyen, H. S.: Approximate Boolean Reasoning: Foundations and Applications in Data Mining, Transactions on Rough Sets, V, LNCS 4100, 2006, 334-506.
- [27] Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning, Information Sciences, 177, 2007, 41-73.
- [28] Pawlak, Z., Skowron, A.: Rudiments of rough sets, Information Sciences, 177, 2007, 3-27.
- [29] Peters, J. F.: Rough ethology: Towards a biologically-inspired study of collective behavior in intelligent systems with approximation spaces, Transactions on Rough Sets, III, LNCS 3400, 2005, 153-174.
- [30] Poggio, T., Smale, S. : The mathematics of learning: Dealing with data, Notices of the American Mathematical Society (AMS), 50(5), 2003, 537-544.
- [31] Rough ICE. Project web site: http : //www. mimuw. edu. pl/^bazan/roughice/.
- [32] Wezel, W. V, Jorna, R., Meystel, A.: Planning in Intelligent Systems: Aspects, Motivations, and Methods, John Wiley & Sons, Hoboken, New Jersey, 2006.
- [33] Zadeh, L., A.: A new direction in AI: Toward a computational theory of perceptions, AI Magazine, 22(1), 2004, 73-84.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ba0f0a0-fa6e-4a02-8a12-13e4d31115e3