Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Research on the use of construction and demolition waste as recycled aggregate for the production of new concrete has confirmed that they are environmentally friendly and constitute an alternative method of waste management. However, contrary to conventional concrete, no large applications of concrete made with recycled concrete have been made and there is still the literature studies of recycled aggregate properties are different, which indicates the need for further research on the properties of cements from waste. This paper presents and compares the results of a laboratory study on the properties of ordinary concrete (BZ), high-strength concrete (BWW), recycled aggregate concrete (REC). The tensile and compressive strength, modulus of elasticity of these concentrates were marked. The research results proved that the compressive strength of the concrete with recycled aggregate, compared with high-performance concrete, is much lower, but only slightly lower than for ordinary concrete. In turn, the tensile strength of the concrete with recycled aggregate is lower than that of high-performance concrete and ordinary concrete. These values, in the case of the compressive strength are as follows: REC – 52MPa; BWW – 68MPa; BZ – 25MPa, whereas for the tensile strength, they reach: REC – 4 MPa, BWW – 6 MPa, BZ – 5.1 MPa. Statistical analysis showed that the given parameters of the analysed concretes are indeed statistically different. Obtained results indicate that recycled aggregate may be aggregate of standard value and good mechanical properties, even better than of ordinary concrete. The application of recycled aggregate is considered to be a new approach in balanced construction and a superb solution to protect the environment.
Wydawca
Rocznik
Tom
Strony
18--29
Opis fizyczny
Bibliogr. 60 poz., fig., tab.
Twórcy
- Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
autor
- Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
- 1. Ahmed H., Tiznobaik M., Huda S.B., Islam M.S., Alam M.S. Recycled aggregate concrete from large-scale production to sustainable field application. Constr Build Mater. 2020;262:119979. https:// doi.org/10.1016/j.conbuildmat.2020.119979
- 2. European-Commission, Construction and Demolition Waste [Internet]. [cited 2020 Jan 7]. Available from: http://ec.europa.eu/environment/waste/con- struction_demolition.htm
- 3. Statistics Poland. Materials Management in 2018. Warsaw;
- 4. Tomaszewska J. Polish transition towards circular economy: Materials management and implications for the construction sector. Materials (Basel). 2020;13(22):1–17. https://doi.org/10.3390/ ma13225228
- 5. Jin R., Li B., Zhou T., Wanatowski D., Piroozfar P. An empirical study of perceptions towards construction and demolition waste recycling and reuse in China. Resour Conserv Recycl. 2017;126(July):86–98. https://doi.org/10.1016/j. resconrec.2017.07.034
- 6. Kisku N., Joshi H., Ansari M., Panda S.K., Nayak S., Dutta S.C. A critical review and assessment for usage of recycled aggregate as sustainable construction material. Constr Build Mater 2017;131:721–40. http://dx.doi.org/10.1016/j.con- buildmat.2016.11.029
- 7. Wójcik M., Bąk Ł., Stachowicz F. Unconventional Materials from Sewage Sludge with a Potential Application in a Road Construction. Adv Sci Technol Res J. 2018;12(4):65–75. https://doi. org/10.12913/22998624/99991
- 8. Borowski G., Świderski T., Ozga M. Stone Dust Agglomeration for Utilizing as Building Material. Adv Sci Technol Res J. 2017, 11(4), 168–74. https://doi.org/10.12913/22998624/79656
- 9. Wang J., Fang Z., Cai Y., Chai J., Wang P., Geng X. Preloading using fill surcharge and prefabricated vertical drains for an airport. Geotext Geomembranes. 2018;46(5):575–85. https://doi. org/10.1016/j.geotexmem.2018.04.013
- 10. Rahman M.A., Imteaz M., Arulrajah A., Disfani M.M. Suitability of recycled construction and demolition aggregates as alternative pipe backfilling materials. J Clean Prod. 2014 Mar 1;66:75–84. https://doi.org/10.1016/j.jclepro.2013.11.005
- 11. Pavlu T., Kocí V., Hájek P. Environmental assessment of two use cycles of recycled aggregate concrete. Sustain. 2019;11(21). https://doi. org/10.3390/su11216185
- 12. Johnston R.B. The 2030 Agenda for sustainable development. Res Glob Sustain Proc 6th Int Congr Arsen Environ AS 2016. 2016;12–4.
- 13. Sormunen P., Kärki T. Recycled construction and demolition waste as a possible source of materials for composite manufacturing. J Build Eng. 2019;24(August 2018):100742. https://doi. org/10.1016/j.jobe.2019.100742
- 14. Özalp F., Yilmaz H.D., Kara M., Kaya Ö., Şahin A. Effects of recycled aggregates from construction and demolition wastes on mechanical and permeability properties of paving stone, kerb and concrete pipes. Constr Build Mater. 2016;110:17–23. https:// doi.org/10.1016/j.conbuildmat.2016.01.030
- 15. Kaarthik M., Maruthachalam D. A sustainable approach of characteristic strength of concrete using recycled fine aggregate. Mater Today Proc. 2020;(in press). https://doi.org/10.1016/j.matpr.2020.11.058
- 16. Abbas A., Fathifazl G., Isgor O.B., Razaqpur A.G., Fournier B., Foo S. Environmental benefits of green concrete. 2006 IEEE EIC Clim Chang Technol Conf EICCCC 2006. 2006; (April 2017).
- 17. Yeheyis M., Hewage K., Shahria Alam M., Eskicioglu C., Sadiq R. An overview of construction and demolition waste management in Canada: a lifecycle analysis approach to sustainabilit. Clean Technol Environ Policy 2013;15:81–91. https:// doi.org/10.1007/s10098-012-0481-6
- 18. Ozbakkaloglu T., Gholampour A., Xie T. Mechanical and Durability Properties of Recycled Aggregate Concrete: Effect of Recycled Aggregate Properties and Content. J Mater Civ Eng. 2018;30(2):04017275. https://doi.org/10.1061/ (asce)mt.1943-5533.0002142
- 19. Odd E., Gjorv K.S. Concrete Technology for a Sustainable Development in the 21st Century. 1st Editio. Odd E. Gjorv KS, editor. London: CRC Press; 2014. 400 p.
- 20. Etxeberria M., Marí A.R., Vázquez E. Recycled aggregate concrete as structural material. Mater Struct Constr. 2007;40(5):529–41. https://doi. org/10.1617/s11527-006-9161-5
- 21. de Juan M.S., Gutiérrez P.A. Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr Build Mater. 2009;23(2):872–7. http://dx.doi.org/10.1016/j.con- buildmat.2008.04.012
- 22. Silva R.V., De Brito J., Dhir R.K. Establishing a relationship between modulus of elasticity and compressive strength of recycled aggregate concrete. Journal of Cleaner Production. 2016;112:2171–86. https://doi.org/10.1016/j.jclepro.2015.10.064
- 23. Silva R.V., De Brito J., Dhir R.K. The influence of the use of recycled aggregates on the compressive strength of concrete: A review. Eur J Environ Civ Eng. 2015;19(7):825–49. htt ps://10.1080/19648189.2014.974831
- 24. Francesconi L, Pani L, Stochino F. Punching shear strength of reinforced recycled concrete slabs. Constr Build Mater. 2016 Nov 30;127:248–63. https:// doi.org/10.32657/10356/72257
- 25. Dhir R. Suitability and practicality of using coarse RCA in normal and high-strength concrete. In: 1st International Conference on Sustainable Construction: Waste Management. Singapore; 2004. p. 108–21.
- 26. Akbarnezhad A., Ong K.C.G., Zhang M.H., Tam C.T., Foo T.W.J. Microwave-assisted beneficiation of recycled concrete aggregates. Constr Build Mater. 2011;25(8):3469–79. http://dx.doi. org/10.1016/j.conbuildmat.2011.03.038
- 27. Etxeberria M., Vázquez E., Marí A., Barra M. Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem Concr Res. 2007;37(5):735–42. https://doi.org/10.1016/j.cemconres.2007.02.002
- 28. Limbachiya M., Meddah M. S., Ouchagour Y. Performance of Portland/silica fume cement concrete produced with recycled concrete aggregate. ACI Mater J. 2012;109:91–100. https://doi. org/10.14359/51683574
- 29. Xiao J.Z., Li J.B., Zhang C. On relationships between the mechanical properties of recycled aggregate concrete: An overview. Mater Struct Constr. 2006;39(6):655–64. https://doi.org/10.1617/ s11527-006-9093-0
- 30. Elzokra A., Al Houri A., Habib A., Habib M., Malkawi A.B. Shrinkage behavior of conventional and nonconventional concrete: A review. Civ Eng J. 2020;6(9):1839–51. https://doi.org/10.28991/cej2020-03091586
- 31. 31. Poon C.S., Shui Z.H., Lam L., Fok H., Kou S.C. Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cem Concr Res. 2004;34(1):31–6. https://doi.org/10.1016/s0008-8846(03)00186-8
- 32. Rahal K. Mechanical properties of concrete with recycled coarse aggregate. Build Environ. 2007;42(1):407–15. https://doi.org/10.1016/j. buildenv.2005.07.033
- 33. Tabsh S.W., Abdelfatah A.S. Influence of recycled concrete aggregates on strength properties of concrete. Constr Build Mater. 2009;23(2):1163–7. https://doi.org/10.1016/j.conbuildmat.2008.06.007
- 34. Lei B., Liu H., Yao Z., Tang Z. Experimental study on the compressive strength, damping and interfacial transition zone properties of modified recycled aggregate concrete. R Soc Open Sci. 2019;6(12). https://doi.org/10.1098/rsos.190813
- 35. Dilbas H., Şimşek M., Çakir Ö. An investigation on mechanical and physical properties of recycled aggregate concrete (RAC) with and without silica fume. Constr Build Mater. 2014;61(March 2006):50–9. https://doi.org/10.1016/j.conbuildmat.2014.02.057
- 36. Joel S. Compressive strength of concrete using fly ash and rice husk ash: A review. Civ Eng J. 2020;6(7):1400–10. https://doi.org/10.28991/cej2020-03091556
- 37. Aldakshe A., Çağlar H., Çağlar A., Avan Ç. The investigation of use as aggregate in lightweight concrete production of boron wastes. Civ Eng J. 2020;6(7):1328–35. https://doi.org/10.28991/cej2020-03091551
- 38. González-Fonteboa B., Martínez-Abella F. Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties. Build Environ. 2008;43(4):429–37. https://doi. org/10.1016/j.buildenv.2007.01.008
- 39. Pereira P., Evangelista L., De Brito J. The effect of superplasticizers on the mechanical performance of concrete made with fine recycled concrete aggregates. Cem Concr Compos. 2012;34(9):1044–52. http://dx.doi.org/10.1016/j. cemconcomp.2012.06.009
- 40. Bairagi N.K., Ravande K., Pareek V.K. Behaviour of concrete with different proportions of natural and recycled aggregates. Resour Conserv Recycl. 1993;9(1–2):109–26. https://doi. org/10.1016/0921-3449(93)90036-F
- 41. Fonseca N., De Brito J., Evangelista L. The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste. Cem Concr Compos. 2011;33(6):637–43. http:// dx.doi.org/10.1016/j.cemconcomp.2011.04.002
- 42. Kou S.-C., Poon C.-S. Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash. Cem Concr Compos. 2013;37:12–9. https://doi. org/10.1016/j.cemconcomp.2012.12.011
- 43. Zega C.J., di Maio A.A. Use of recycled fine aggregate in concretes with durable requirements. Waste Manag. 2011;31:2336–2340. https://doi. org/10.1016/j.wasman.2011.06.011
- 44. https://www.lafarge.pl/cement-cem-iib-v-325-r- disabled-page.
- 45. Sadowska-Buraczewska B, Barnat-Hunek D, Szafraniec M. Influence of recycled high-performance aggregate on deformation and load-carrying capacity of reinforced concrete beams. Materials (Basel). 2020;13(1):186. https://doi.org/10.3390/ ma13010186
- 46. Sadiqul Islam G.M., Gupta S.D. Evaluating plastic shrinkage and permeability of polypropylene fiber reinforced concrete. Int J Sustain Built Environ. 2016;5(2):345–54. http://dx.doi.org/10.1016/j. ijsbe.2016.05.007
- 47. Polish standardization committee. esting Hardened Concrete—Part. 3: Compressive Strength of Test Specimens.
- 48. Polish standardization committee. Testing Hardened Concrete—Part. 6: Tensile Splitting Strength of Test Specimens.
- 49. Polish standardization committee. Determination of the Modulus of Elasticity in Compression.
- 50. Shapiro S.S., Wilk M.B. An analysis of variance test for normality (complete samples). Biometrika. 1965;52:591–611. https://doi.org/10.2307/2333709
- 51. Bam E.K.P., Akiti T.T., Osae D.S., Ganyaglo S.Y. Gibrilla A. Multivariate cluster analysis of some major and trace elements distribution in an unsaturated zone profile, Densu river basin. African J Environ Sci Technol. 2011;5(3):155–67.
- 52. Hahladakis J.N., Purnell P., Aljabri H.M.S.J. Assessing the role and use of recycled aggregates in the sustainable management of construction and demolition waste via a mini-review and a case study. Waste Manag Res. 2020;38(4):460–71 https://doi. org/10.1177/0734242X19897816.
- 53. Kessal O. Performance Study of Eco-Concrete Based on Waste Demolition as Recycled Aggregates. Mater Int. 2020;2(2):123–30. https://doi. org/10.33263/materials22.123130
- 54. Sagoe-Crentsil K.K., Brown T. Taylor A.H. Performance of Concrete Made with Commercially Produced Coarse Recycled Concrete Aggregate. Cem Concr Res. 2001;31:707–12. https://doi. org/10.1016/S0008-8846(00)00476-2
- 55. Gómez-Soberón M.J. Porosity of Recycled Concrete with Substitution of Recycled Concrete Aggregate: an experimental study. Cem Concr Res. 2002;32:1301–11. https://doi.org/10.1016/s00088846(02)00795-0
- 56. Malešev M., Radonjanin V., Marinković S. Recycled concrete as aggregate for structural concrete production. Sustainability. 2010;2(5):1204–25. https://doi.org/10.3390/su2051204
- 57. Noguchi T., Nemati K.M. Relationship between compressive strength and modulus of elasticity of high-strength concrete. Proc 6th Int Conf Fract Mech Concr Concr Struct. 2007;3(August 1995):1305– 11. https://doi.org/10.3130/aijs.60.1_8
- 58. Piasta W., Budzyński W., Góra J. Wpływ rodzaju kruszywa grubego na odkształcalność betonów zwykłych. Przegląd Bud. 2012;83(7–8):35–8.
- 59. Sassu M., De Falco A., Giresini L., Puppio M.L. Structural solutions for low-cost bamboo frames: Experimental tests and constructive assessments. Materials (Basel). 2016;9(5). https://doi:10.3390/ ma9050346
- 60. Pani L., Francesconi L., Rombi J., Mistretta F., Sassu M., Stochino F. Effect of parent concrete on the performance of recycled aggregate concrete. Sustain. 2020;12(22):1–17. https://doi.org/10.3390/ su12229399
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b9b9d97-0a62-4a2f-a72f-e5fe65074044