Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An automatic inversion using ridge regression algorithm is developed in the space domain to analyze the gravity anomalies of sedimentary basins, among which the density contrast decreases with depth following a prescribed exponential function. A stack of vertical prisms having equal widths, whose depths become the unknown parameters to be estimated, describes the geometry of a sedimentary basin above the basement complex. Because no closed form analytical equation can be derivable in the space domain using the exponential density-depth function, a combination of analytical and numerical approaches is used to realize forward gravity modeling. The depth estimates of sedimentbasement interface are initiated and subsequently improved iteratively by minimizing the objective function between the observed and modeled gravity anomalies within the specified convergence criteria. Two gravity anomaly profiles, one synthetic and a real, are interpreted using the proposed technique to demonstrate its applicability.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1066--1079
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
- Centre for Earth and Space Sciences, University of Hyderabad, Hyderabad, India
autor
- Centre for Earth and Space Sciences, University of Hyderabad, Hyderabad, India
Bibliografia
- [1] Abbott, R.E., and J.N. Louie (2000), Depth to bedrock using gravimetry in the Reno and Carson City, Nevada, area basins, Geophysics 65, 2, 340-350, DOI: 10.1190/1.1444730.
- [2] Abdoh, A., D. Cowan, and M. Pilkington (1990), 3D gravity inversion of the Cheshire basin, Geophys. Prospect. 38, 8, 999-1011, DOI: 10.1111/j.1365-2478.1990.tb01887.x.
- [3] Blakely, R.J. (1995), Potential Theory in Gravity and Magnetic Applications, Cambridge University Press, Cambridge.
- [4] Bott, M.H.P. (1960), The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins, Geophys. J. Int. 3, 1, 63-67, DOI: 10.1111/j.1365-246X.1960.tb00065.x.
- [5] Chai, Y., and W.J. Hinze (1988), Gravity inversion of an interface above, which the density contrast varies exponentially with depth, Geophysics 53, 6, 837-845, DOI: 10.1190/1.1442518.
- [6] Chakravarthi, V. (2003), Digitally implemented method for automatic optimization of gravity fields obtained from three-dimensional density interfaces using depth dependent density, US Patent 6615139 B1.
- [7] Chakravarthi, V., and B. Ramamma (2013), Gravity anomaly modeling of multiple geological sources having different strike lengths and arbitrary density contrast variations, Near Surf. Geophys. 11, 4, 363-370, DOI: 10.3997/1873-0604.2013001.
- [8] Chakravarthi, V., and N. Sundararajan (2007), Marquardt optimization of gravity anomalies of anticlinal and synclinal structures with prescribed depthdependent density, Geophys. Prospect. 55, 4, 571-587, DOI: 10.1111/ j.1365-2478.2007.00625.x.
- [9] Chappell, A.R., and N.J. Kusznir (2008), Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction, Geophys. J. Int. 174, 1, 1-13, DOI: 10.1111/j.1365-246X.2008.03803.x.
- [10] Cordell, L. (1973), Gravity analysis using an exponential density-depth function - San Jacinto Graben, California, Geophysics 38, 4, 684-690, DOI: 10.1190/1.1440367.
- [11] Cowie, P.A., and G.D. Karner (1990), Gravity effect of sediment compaction: examples from the North Sea and the Rhine Graben, Earth Planet. Sci. Lett. 99, 1-2, 141-153, DOI: 10.1016/0012-821X(90)90078-C.
- [12] Fett, J.D. (1968), Geophysical investigation of the San Jacinto Valley, Riverside County, California, M.Sc. Thesis, University of California, Riverside, USA, 87 pp.
- [13] Filon, L.N.G. (1928), On a quadrature formula for trigonometric integrals, Proc. Roy. Soc. Edinburgh 49, 1, 38-47.
- [14] García-Abdeslem, J. (1992), Gravitational attraction of a rectangular prism with depth-dependent density, Geophysics 57, 3, 470-473, DOI: 10.1190/ 1.1443261.
- [15] Gómez-Ortiz, D., R. Tejero-López, R. Babín-Vich, and A. Rivas-Ponce (2005), Crustal density structure in the Spanish Central System derived from gravity data analysis (Central Spain), Tectonophysics 403, 1-4, 131-149, DOI: 10.1016/j.tecto.2005.04.006.
- [16] Granser, H. (1987), Three-dimensional interpretation of gravity data from sedimentary basins using an exponential density-depth function, Geophys. Prospect. 35, 9, 1030-1041, DOI: 10.1111/j.1365-2478.1987.tb00858.x.
- [17] Guspi, F. (1990), General 2D gravity inversion with density contrast varying with depth, Geoexploration 26, 4, 253-265, DOI: 10.1016/0016-7142(90)90007-F.
- [18] Kadima, E., D. Delvaux, S.N. Sebagenzi, L. Tack, and S.M. Kabeya (2011), Structure and geological history of the Congo Basin: an integrated interpretation of gravity, magnetic and reflection seismic data, Basin Res. 23, 5, 499-527, DOI: 10.1111/j.1365-2117.2011.00500.x.
- [19] Mantlik, F., and M.J.S. Matias (2010), Interpretation and modeling of regional gravity data of the Aveiro Basin (Northwest Portugal), C. R. Geosci. 342, 11, 823-836, DOI: 10.1016/j.crte.2010.06.005.
- [20] Murthy, I.V.R., and D.B. Rao (1979), Gravity anomalies of two-dimensional bodies of irregular cross-section with density contrast varying with depth, Geophysics 44, 9, 1525-1530, DOI: 10.1190/1.1441023.
- [21] Murthy, I.V.R., and S.J. Rao (1989), A FORTRAN 77 program for inverting gravity anomalies of two-dimensional basement structures, Comput. Geosci. 15, 7, 1149-1156, DOI: 10.1016/0098-3004(89)90126-X.
- [22] Northwest Geophysical Associates (2004), GM-SYS gravity/magnetic modeling software. User’s guide, Version 4.9, Northwest Geophysical Associates, Inc., Corvallis, USA, 101 pp.
- [23] Rao, C.V., V. Chakravarthi, and M.L. Raju (1994), Forward modelling: Gravity anomalies of two-dimensional bodies of arbitrary shape with hyperbolic and parabolic density functions, Comput. Geosci. 20, 5, 873-880, DOI: 10.1016/0098-3004(94)90118-X.
- [24] Rao, D.B., and C.P.V.N.J.M. Rao (1999), Two-dimensional interpretation of gravity anomalies over sedimentary basins with an exponential decrease of density contrast with depth, Proc. Indian Acad. Sci. (Earth Planet. Sci.) 108, 2, 99-106, DOI: 10.1007/BF02840488.
- [25] Rao, D.B., M.J. Prakash, and N.R. Babu (1993), Gravity interpretation using Fourier transforms and simple geometrical models with exponential density contrast, Geophysics 58, 8, 1074-1083, DOI: 10.1190/1.1443491.
- [26] Singh, B. (2002), Simultaneous computation of gravity and magnetic anomalies resulting from a 2-D object, Geophysics 67, 3, 801-806, DOI: 10.1190/ 1.1484524.
- [27] Won, I.J., and M. Bevis (1987), Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and Fortran subroutines, Geophysics 52, 2, 232-238, DOI: 10.1190/1.1442298.
- [28] Zhou, X. (2013), Gravity inversion of 2D bedrock topography for heterogeneous sedimentary basins based on line integral and maximum difference reduction methods, Geophys. Prospect. 61, 1, 220-234, DOI: 10.111/j.1365-2478.2011.01046.x.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b971f6f-7c9f-4774-a955-7f313da61e6d