PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of heatwaves in Uzbekistan: characteristics, implications, and future climate projections

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heatwaves (HWs) have emerged as some of the most serious climate-induced hazards worldwide. This research analyzes the occurrence, characteristics, and consequences of HWs across Uzbekistan between 1980 and 2020. The study primarily aims to identify heatwave thresholds, examine related meteorological patterns, and evaluate their influence on human health and agricultural systems. Using reanalysis data from the National Center for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR), heatwave thresholds were established based on temperature anomalies exceeding 5°C above the long-term July mean. Summer heat in Uzbekistan peaks in July; Bukhara and Khorezm are identified as the regions most affected by extreme temperatures. During the 40-year period, five HWs were documented in Bukhara and seven in Khorezm. Synoptic analysis revealed that persistent cyclonic activity dominated during these episodes, leading to stagnant and exceptionally warm atmospheric conditions. Mortality statistics from the United Nations indicate that although the overall death rate has declined since the late 1970s, the health risks associated with prolonged heat events remain substantial. Agricultural sensitivity was also evident, with increasing heat contributing to reduced crop yields and water stress, thus threatening food security. Furthermore, Coupled Model Intercomparison Project Phase 6 (CMIP6) model simulations under SSP1–2.6, SSP2-4.5, and SSP5-8.5 scenarios suggest that continued warming will likely heighten both the frequency and duration of HWs, posing greater risks to human well-being and agricultural resilience. These results underscore the need for enhanced early warning systems, improved weather forecasting, and climate-resilient policies in Uzbekistan. Strengthening community awareness and integrating scientific insights into policy frameworks are vital for minimizing the escalating impacts of HWs in a warming environment.
Słowa kluczowe
Twórcy
  • Nanjing University of Information Science and Technology, China
  • Nanjing University of Information Science and Technology, China
Bibliografia
  • Abatan A.A., Abiodun B.J., Lawal K.A., Gutowski Jr. W.J., 2016, Trends in extreme temperature over Nigeria from percentile‐based threshold indices, International Journal of Climatology, 36 (6), 2527-2540., DOI: 10.1002/joc.4510.
  • Akoglu H., 2018, User’s guide to correlation coefficients, Turkish Journal of Emergency Medicine, 18 (3), 91-93, DOI: 10.1016/j.tjem.2018.08.001.
  • Ankrah J., Monteiro A., Madureira H., 2023, Extreme temperature and rainfall events and future climate change projections in the coastal Savannah agroecological zone of Ghana, Atmosphere, 14 (2), DOI: 10.3390/atmos14020386.
  • Araya-Osses D., Casanueva A. Román-Figueroa C., Uribe J.M., Paneque M., 2020, Climate change projections of temperature and precipitation in Chile based on statistical downscaling, Climate Dynamics, 54 (9-10), 4309-4330, DOI: 10.1007/s00382-020- 05231-4.
  • Barbier J., Guichard F., Bouniol D., Couvreux F., Roehrig R., 2018, Detection of intraseasonal large-scale heat waves: characteristics and historical trends during the Sahelian spring, Journal of Climate, 31 (1), 61-80, DOI: 10.1175/JCLI-D-17-0244.1.
  • Carlson A.E., 2008, Heat waves, global warming, and mitigation, UCLA Journal of Environmental Law and Policy, 26 (1), 169-215, DOI: 10.5070/L5261019556.
  • Chambers J., 2020, Global and cross-country analysis of exposure of vulnerable populations to heatwaves from 1980 to 2018, Climatic Change, 163 (1), 539-558, DOI: 10.1007/s10584-020-02884-2.
  • Chen X., Li N., Liu J., Zhang Z., Liu Y., 2019, Global heat wave hazard considering humidity effects during the 21st century, International Journal of Environmental Research and Public Health, 16 (9), DOI: 10.3390/ijerph16091513.
  • Duveiller G., Fasbender D., Meroni M., 2016, Revisiting the concept of a symmetric index of agreement for continuous datasets, Scientific Reports, 6 (1), DOI: 10.1038/srep19401.
  • Eyring V., Bony S., Meehl G.A., Senior C.A., Stevens B., Stouffer R.J., Taylor K.E., 2016, Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geoscientific Model Development, 9 (5), 1937-1958, DOI: 10.5194/gmd-9-1937-2016.
  • Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Jenne R., Joseph D., 2018, The NCEP/NCAR 40-Year Reanalysis Project, [in:] Renewable Energy, B. Sorensen (ed.), Routledge, 146-194, DOI: 10.4324/9781315793245-16.
  • Kang H., Zhu B., Gao J., He Y., Wang H., Su J., Pan C., Zhu T., Yu B., 2019, Potential impacts of cold frontal passage on air quality over the Yangtze River Delta, China, Atmospheric Chemistry and Physics, 19 (6), 3673-3685, DOI: 10.5194/acp-19-3673-2019.
  • Liu Y., Geng X., Hao Z., Zheng J., 2020, Changes in climate extremes in Central Asia under 1.5 and 2°C global warming and their impacts on agricultural productions, Atmosphere, 11 (10), DOI: 10.3390/atmos11101076.
  • Miao C., Duan Q., Sun Q., Huang Y., Kong D., Yang T., Ye A., Di Z., Gong W., 2014, Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia, Environmental Research Letters, 9 (5), DOI: 10.1088/1748- 9326/9/5/055007.
  • Muñoz-Sabater J., Dutra E., Agustí-Panareda A., Albergel C., Arduini G., Balsamo G., Boussetta S., Choulga M., Harrigan S., Hersbach H., Martens B., Miralles D.G., Piles M., Rodríguez-Fernández N.J., Zsoter E., Buontempo C., Thépaut J.-N., 2021, ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth System Science Data, 13 (9), 4349-4383, DOI: 10.5194/essd-13-4349-2021.
  • Navarro-Racines C., Tarapues J., Thornton P., Jarvis A., Ramirez-Villegas J., 2020, High-resolution and bias-corrected CMIP5 projections for climate change impact assessments, Scientific Data, 7 (1), DO: 10.1038/s41597-019-0343-8.
  • Perkins-Kirkpatrick S.E., Lewis S.C., 2020, Increasing trends in regional heatwaves, Nature Communications, 11 (1), DOI: 10.1038/s41467-020-16970-7.
  • Raei E., Nikoo M.R., AghaKouchak A., Mazdiyasni O., Sadegh M., 2018, GHWR, a multi-method global heatwave and warm-spell record and toolbox, Scientific Data, 5 (1), DOI: 10.1038/sdata.2018.206.
  • Russo S., Sillmann J., Sterl A., 2017, Humid heat waves at different warming levels, Scientific Reports, 7 (1), DOI: 10.1038/s41598-017-07536-7.
  • Sutton W.R., Srivastava J.P., Neumann J.E., Droogers P., Boehlert B., 2013, Reducing the Vulnerability of Uzbekistan’s Agricultural Systems to Climate Change, A World Bank Study, 123 pp.
  • Tomczyk A.M., Piniewski M., Eini M.R., Bednorz E., 2022, Projections of changes in maximum air temperature and hot days in Poland, International Journal of Climatology, 42 (10), 5242-5254, DOI: 10.1002/joc.7530.
  • Tošić I., Tošić M., Lazić I., Aleksandrov N., Putniković S., Djurdjević V., 2023, Spatio‐temporal changes in the mean and extreme temperature indices for Serbia, International Journal of Climatology, 43 (5), 2391-2410, DOI: 10.1002/joc.7981.
  • UNDP, 2007, Uzbekistan: Climate Change and Sustainable Development, United Nations Development Programme.
  • UNFCCC, 2016, Third National Communication of the Republic of Uzbekistan under the UN Framework Convention on Climate Change, UNEP, UZHYMET, Tashkent, 221 pp.
  • USAID, 2018a, Climate risk in Mozambique: country risk profil, available online at https://reliefweb.int/report/mozambique/climate-risk-profile-mozambique-fact-sheet (data access 12.11.2025).
  • USAID, 2018b, Climate risk in Uzbekistan: country risk profil, available online at. https://www.preventionweb.net/publication/climate-risk-profile-uzbekistan (data access 12.11.2025).
  • UZSTAT, 2023, Demographic Situation in the Republic of Uzbekistan, Statistics Agency Under the President of the Republic of Uzbekistan.
  • Willmott C.J., Matsuura K., 2005, Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Climate Research, 30, 79-82, DOI: 10.3354/cr030079.
  • Willmott C.J., Robeson S.M., Matsuura K., 2012, A refined index of model performance, International Journal of Climatology, 32 (13), 2088-2094, DOI: 10.1002/joc.2419.
  • WMO, 2016, WMO Statement on the Status of the Global Climate in 2015, WMO-No. 1167, available online at https://digitallibrary.un.org/record/3894644?v=pdf (data access 12.11.2025).
  • World Bank, 2020, Climate change in Uzbekistan: Illustrated summary, Zoï Environment Network, The Regional Environmental Centre for Central Asia, available online at https://www.preventionweb.net/publication/climate-change-uzbekistan-illustratedsummary (data access 12.11.2025).
  • World Bank, 2021, Climate Risk Country Profile: Uzbekistan, World Bank Group, Asian Development Bank, available online at https://www.adb.org/publications/climate-risk-country-profile-uzbekistan (data access 12.11.2025).
  • Yaméogo J., 2024, Changes in the seasonal cycles of extreme temperatures in the Sudano-Sahelian domain in West Africa: a case study from Burkina Faso, Meteorology Hydrology and Water Management, 12 (2), 33-57, DOI: 10.26491/mhwm/194451.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b9457e0-dade-4f62-8f75-144246fae5b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.