PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis and Simulation Performance of a Reverse Osmosis Plant in the Al-Maqal Port

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Basrah province (southern of Iraq) was interested in establishing desalination plants to provide drinking water due to the high levels of salinity in its water resources. This work was carried out in order to evaluate and simulate the functionality of the reverse osmosis plant in the Al-Maqal port. From the field and laboratory measurement, this study concluded that the considered parameters of product water by reverse osmosis (RO) plant were within the Iraqi standard (IRS) limits. The calculation of operation indices showed that the recovery rate of plant (72%) and the permeate flux of plant (20 lmh) was within for limitation of brackish surface water. In turn, the plant has a low salt rejection (90.1%) and a high pressure drop (5 bar); therefore, the membranes require backwashing or chemical cleaning. Then, the performance of RO membrane was simulated by the Winflows software. The best operating parameters were identified. The coefficient of determination (R2) between simulated and measured TDS was 0.83. Therefore, the simulated TDS of permeate multiplied by 5.3 was given a good estimation for actual TDS within acceptable an error rate of 17%.
Słowa kluczowe
Rocznik
Strony
173--186
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, College of Engineering, University of Basrah, P.O. Box 49, Basrah, Iraq
  • Department of Civil Engineering, College of Engineering, University of Basrah, P.O. Box 49, Basrah, Iraq
  • Department of Civil Engineering, College of Engineering, University of Basrah, P.O. Box 49, Basrah, Iraq
Bibliografia
  • 1. Agashichev S., Almalek S., Almazrouei A., Osman E., Kumar J., Ali T., Abdulla M. 2009. The influence of seawater temperature on the net driving force and CP degree in reverse osmosis. Desalination and Water Treatment, 6(1–3), 276–280.
  • 2. Al-karaghouli A., Kasmerski L. 2010. Economic and Technical Analysis of a Reverse-Osmosis Water Desalination Plant. National Renewable Energy Laboratory [Internet], 1(3), 318–328. http://www.wrri.nmsu.edu/conf/conf11/reverse_osmosis_deep.pdf
  • 3. Charcosset C. 2009. A review of membrane processes and renewable energies for desalination. Desalination, 245(1–3), 214–231.
  • 4. Chu K.H., Lim J., Kim S.J., Jeong T.U., Hwang M.H. 2020. Determination of optimal design factors and operating conditions in a large-scale seawater reverse osmosis desalination plant. Journal of Cleaner Production, 244.
  • 5. Federation WE. 1999. Standard Methods for the Examination of Water and Wastewater Standard Methods for the Examination of Water and Wastewater. Public Health, 51(1), 940–940. http://www.ajph.org/cgi/doi/10.2105/AJPH.51.6.940-a
  • 6. Greenlee L.F., Lawler D.F., Freeman B.D., Marrot B., Moulin P. 2009. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Research, 43(9), 2317–2348.
  • 7. Hamad J.Z., Ha C., Kennedy M.D., Amy G.L. 2013. Application of ceramic membranes for seawater reverse osmosis (SWRO) pre-treatment. Desalination and Water Treatment, 51(25–27), 4881–4891.
  • 8. Hasan Z.I., Taleb A.H. 2020. Assessment of the Quality of Drinking Water for Plants in the AlKarkh, Baghdad, Iraq. Ibn AL-Haitham Journal For Pure and Applied Sciences, 33(1), 1.
  • 9. Henkens W.C.M., Smit J.A.M. 1979. Salt rejection and flux in reverse osmosis with compactible membranes. Desalination, 28(1), 65–85.
  • 10. Hu J., Cao S.A., Han J., Hao X. 2011. Research on corrosion factors and corrosion prevention measure of carbon steel in produce water of reverse osmosis in power plant. In: Asia-Pacific Power and Energy Engineering Conference, APPEEC.
  • 11. Idrees M.F. 2020. Performance Analysis and Treatment Technologies of Reverse Osmosis Plant – A case study. Case Studies in Chemical and Environmental Engineering, 2.
  • 12. Jamaly S., Darwish N.N., Ahmed I., Hasan S.W. 2014. A short review on reverse osmosis pretreatment technologies. Desalination, 354, 30–38.
  • 13. Kucera J. 2014. Introduction to Desalination. Desalination: Water from Water, 9781118208, 1–37.
  • 14. Kucera J. 2015. Reverse osmosis: Industrial processes and applications.
  • 15. Lilane A., Saifaoui D., Hariss S., Jenkal H., Chouiekh M. 2020. Modeling and simulation of the performances of the reverse osmosis membrane. In: Materials Today: Proceedings, 24, 114–118.
  • 16. Lin S., Zhao H., Zhu L., He T., Chen S., Gao C., Zhang L. 2021. Seawater desalination technology and engineering in China: A review. Desalination, 498.
  • 17. Miranda M.S., Infield D. 2003. A wind-powered seawater reverse-osmosis system without batteries. Desalination, 153(1–3), 9–16.
  • 18. Qiu T., Davies P.A. 2012. Comparison of configurations for high-recovery inland desalination systems. Water (Switzerland), 4(3), 690–706.
  • 19. Sarai Atab M., Smallbone A.J., Roskilly A.P. 2016. An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation. Desalination, 397, 174–184.
  • 20. Srivathsan G., Sparrow E.M., Gorman J.M. 2014. Reverse osmosis issues relating to pressure drop, mass transfer, turbulence, and unsteadiness. Desalination, 341(1), 83–86.
  • 21. Taha A.H., Joshi H., Garg M.C., Manhee H.K. 2021. Case Study of Evaluation RO Desalination Systems for Potable Water in Safwan, Iraq. Journal of Geoscience and Environment Protection, 9(2), 158–181.
  • 22. Vaithilingam S., Gopal S.T., Srinivasan S.K., Manokar A.M., Sathyamurthy R., Esakkimuthu G.S., Kumar R., Sharifpur M. 2021. An extensive review on thermodynamic aspect based solar desalination techniques. Journal of Thermal Analysis and Calorimetry, 145(3), 1103–1119.
  • 23. Wang L.K., Yung-Tse Hung N.K.S. 2007. Advanced Physicochemical Treatment Technologies.
  • 24. Wang Z., Zhang Y., Wang T., Zhang B., Ma H. 2021. Design and energy consumption analysis of small reverse osmosis seawater desalination equipment. Energies, 14(8).
  • 25. Wasfy K.I. 2017. Brackish water desalination using reverse osmosis system. Misr Journal of Agricultural Engineering, 34(4), 1783–1800.
  • 26. Wenten I.G., Khoiruddin. 2016. Reverse osmosis applications: Prospect and challenges. Desalination, 391, 112–125.
  • 27. Zhang H., Sun H., Liu Y. 2020. Water reclamation and reuse. Water Environment Research, 92(10), 1701–1710.
  • 28. Zhu Z., Peng D., Wang H. 2019. Seawater desalination in China: An overview. Journal of Water Reuse and Desalination, 9(2), 115–132.
  • 29. Zioui D., Aburideh H., Tigrine Z., Hout S., Abbas M., Merzouk N.K. 2018. Experimental Study on a Reverse Osmosis Device Coupled with Solar Energy for Water Desalination. In: Proceedings of 2017 International Renewable and Sustainable Energy Conference, IRSEC 2017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b930f00-e203-4f8f-bf6b-da7228e0a547
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.