Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents algorithms for computing the length of a sum of squares and a Pythagoras element in a global field K of characteristic different from 2. In the first part of the paper, we present algorithms for computing the length in a non-dyadic and dyadic (if K is a number field) completion of K. These two algorithms serve as subsidiary steps for computing lengths in global fields. In the second part of the paper we present a procedure for constructing an element whose length equals the Pythagoras number of a global field, termed a Pythagoras element.
Wydawca
Czasopismo
Rocznik
Tom
Strony
297--306
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
- Institute of Mathematics, University of Silesia, Poland
autor
- Institute of Mathematics, University of Silesia, Poland
Bibliografia
- [1] Choi MD, Lam TY, Reznick B, Rosenberg A. Sums of Squares in Some Integral domains. Journal of Algebra, 1980. 65(1):234-256. doi:10.1016/0021-8693(80)90248-3.
- [2] Powers V, Wörmann T. An algorithm for Sums of Squares of Real Polynomials. Journal of Pure and Applied Algebra, 1998. 127(1):99-104. doi:10.1016/S0022-4049(97)83827-3.
- [3] Choi MD, Doi ZD, Lam TY, Reznick B. The Pythagoras Number of Some Affine Algebras and Local Algebras. Journal für die Reine und Angewandte Mathematik, 1982. 336:45-82. doi:eudml.org/doc/59018.
- [4] Choi MD, Lam TY, Reznick B. Sums of Squares of Real Polynomials. K-theory and Algebraic Geometry: connections with Quadratic Forms and Division Algebras (Santa Barbara, CA, 1992). Proceedings of Symposia in Pure Mathematics, 1995. 58:103-126. ISBN:978-0-8218-9361-6, 978-0-8218-0340-0.
- [5] Powers V. Positive Polynomials and Sums of Squares: theory and Practice. Real Algebraic Geometry. Panoramas and Syntheses, 2017. 51:155-180. ISSN:1272-3835.
- [6] Koprowski P, Czogała A. Computing with Quadratic Forms Over Number Fields. Journal of Symbolic Computation, 2018. 89:129-145. doi:10.1016/j.jsc.2017.11.009.
- [7] Lam TY. Introduction to Quadratic Forms Over Fields, volume 67. American Mathematical Soc., 2005. ISBN-10:0-8218-1095-2, 13:978-0-8218-1095-8.
- [8] Scharlau W. Hermitian Forms over Global Fields. Springer, 1985.
- [9] Szymiczek K. Bilinear Algebra: An Introduction to the Algebraic theory of quadratic forms, volume 7. CRC Press, 1997. ISBN-10:9056990764, 13:978-9056990763.
- [10] Veres OE. On the Complexity of Polynomial Factorization over p-adic Fields. Ph.D. thesis, Concordia University, 2009. ID:976383.
- [11] Guàrdia J, Montes J, Nart E. Higher Newton Polygons in the Computation of Discriminants and Prime Ideal Decomposition in Number Fields. Journal de th´eorie des nombres de Bordeaux, 2011. 23(3):667-696. doi.org/10.5802/jtnb.782.
- [12] Guàrdia J, Montes J, Nart E. Newton Polygons of Higher Order in Algebraic Number Theory. Transactions of the American Mathematical Society, 2012. 364(1):361-416. doi:10.1090/S0002-9947-2011-05442-5.
- [13] Voight J. Identifying the Matrix Ring: Algorithms for Quaternion Algebras and Quadratic Forms. Springer, 2013. doi:10.1007/978-1-4614-7488-3 10.
- [14] Cohen H. A Course in Computational Algebraic Number Theory. Graduate texts in Math., 1993. 138:88. ISBN:978-3-662-02945-9.
- [15] Cohen H. Advanced Topics in Computational Number Theory, volume 193. Springer Science & Business Media, 2012. ISBN-13:978-1461264194, 10:1461264197.
- [16] Guàrdia J, Montes J, Nart E. A New Computational Approach to Ideal Theory in Number Fields. Foundations of Computational Mathematics, 2013. 13(5):729-762. doi:10.1007/s10208-012-9137-5.
- [17] Ireland K, Rosen M. A Classical Introduction to Modern Number Theory, volume 84. Springer-Verlag, 1990. doi:10.1007/978-1-4757-2103-4.
- [18] Koprowski P. CQF Magma Package. ACM Communications in Computer Algebra, 2020. 54(2):53-56. doi:10.1145/3427218.3427224.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b921ccf-d7c6-4de6-8285-4a414cc4fb7d