PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of mechanical properties of soils based on CPTU data

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study aimed to interpret the results of cone penetration tests with pore pressure measurement (CPTU). Tests were performed on a section of the designed road about 200 m long. The subsoil under consideration was characterized by organic soils deposited to a depth of approximately 8 m. Due to the problematic soil and water conditions, improvement with geosynthetic encased columns (GEC) was performed. According to the Recommendations for Design and Analysis of Earth Structures using Geosynthetic Reinforcements – EBGEO, the constrained modulus Eoed and effective friction angle φ’ of soil below the GEC column base should be higher than 5 MPa (Eoed > 5 MPa) and 30° (φ’ > 30°), respectively. In this study, the Eoed and φ’ parameters were determined based on CPTU tests conducted in 12 locations. Analysis of the CPTU data showed that the constrained modulus and effective friction angle of the soil deposited below the GEC column base did not meet EBGEO requirements in most locations. It was also concluded that the minimum value of the constrained modulus required by EBGEO is too low compared with the requested value of the effective friction angle.
Rocznik
Strony
55--64
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
  • PhD; Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Wiejska 45A,15-351 Bialystok
Bibliografia
  • [1] Chu, J., Varaskin, S., Klotz, U., & Menge, P. (2009). Construction Processes. In M. Hanza, M. Shahien & Y. El-Mossallamy (Eds.), The Academia and Practice of Geotechnical Engineering (3006–3135). IOS Press/Millpress Science Pub.
  • [2] Harlten, J. (1996). Methods of Construction. In J. Harlten & W. Wolski (Eds.), Embankments on Organic Soils. Amsterdam: Elsevier Science B.V.
  • [3] Huat, B. B. K., Prasad, A., Asadi, A., & Kazemian, S. (2014). Geotechnics of Organic Soils and Peat. London: Taylor & Francis Group.
  • [4] Nicholson, P. G. (2015). Soil improvement and ground modification methods. Waltham: Elsevier Inc.
  • [5] Meyer, Z., Sobolewski, J., & Łopatka, A. (2015). Kolumny piaskowe w otoczce geosyntetycznej. Prezentacja nowego opisu matematycznego systemu GEC poprzez studium najważniejszych parametrów (Sand geosynthetic encased columns. Presentation of the new mathematical description of the GEC system through studying the most critical parameters). Inżynieria Morska i Geotechnika, 3, 428–433.
  • [6] EBGEO (2011). Recommendations for Design and Analysis of Earth Structures using Geosynthetic Reinforcements. Berlin, Germany: Ernst & Sohn, A Wiley Company.
  • [7] Huat, B. B. K., Maail, S., & Mohammad, T. A. (2005). Effect of Chemical Admixtures on the Engineering Properties of Tropical Peat Soils. American Journal of Applied Sciences, 2(7), 1113–1120.
  • [8] Lechowicz, Z., & Szymański, A. (2002). Odkształcenia i stateczność nasypów na gruntach organicznych (Deformation and stability of embankments on organic soils). Warsaw, Poland: Warsaw University of Life Sciences Press.
  • [9] Tankiewicz, M., & Bagińska, I. (2021). Assessment and Verification of Correlations in CPTu Testing on the Example of Soil from the Wroclaw Surroundings (Poland). Archives of Mining Sciences, 66(2), 313–327.
  • [10] Eslami, A., Moshfeghi, S., MolaAbasi, H., & Eslami, M. (2019). Piezocone and Cone Penetration Test (CPTu and CPT) Applications in Foundation Engineering. Oxford, England; Cambridge, Massachusetts: Butterworth-Heinemann.
  • [11] Lunne, T., Robertson, P. K., & Powell, J. J. M. (1997). Cone Penetration Testing in Geotechnical Practice. New York, USA: Blackie Academic, EF & FN Spon.
  • [12] Mayne, P. W. (2006). In-Situ Test Calibrations for Evaluating Soil Parameters. In T. S. Tan, K. K. Phoon, D. W. Hight & S. Leroueil (Eds.), Characterisation and Engineering Properties of Natural Soils, 3, 1–56. CRC Press.
  • [13] Mayne, P. W. (2007). Cone penetration testing: A synthesis of highway practice. Washington, D.C., USA: Transportation Research Board.
  • [14] Robertson, P. K. (2009). Interpretation of cone penetration tests – a unified approach. Canadian Geotechnical Journal, 46(11), 1337–1355.
  • [15] Robertson, P. K., & Cabal, K. L. (2015). Cone Penetration Testing for Geotechnical Engineering. Signal Hill, California: Gregg Drilling & Testing, Inc.
  • [16] Majtyka, T. (2013). Peat deposits in Poland. http://commons.wikimedia.org/wiki/File:PL_torf_złoża.png. Accessed 9 April 2022.
  • [17] Lambe, T. W., & Whitman, R. V. (1969). Soil Mechanics. New York, USA: John Wiley & Sons.
  • [18] European Committee for Standardization (2007). EN 1997–2:2007: Eurocode 7 – Geotechnical design – Part 2: Ground investigation and testing.
  • [19] Sanglerat, G. (1972). The penetrometer and soil exploration. Vol. 1 (2nd ed.). Amsterdam, Netherlands: Elsevier Scientific Publishing Company.
  • [20] Meigh, A. C. (1987). Cone penetration testing: methods and interpretation. London, United Kingdom: Construction Industry Research and Information Association.
  • [21] Senneset, K., Sandven, R., & Janbu, N. (1989). Evaluation of Soil Parameters from Piezocone Tests. In E. T. Crump, N. C. Kassabian, R. S. Pitt, A. G. Tobias & K. P. O’Leary (Eds.), In situ testing of soil properties for transportation. Transportation Research record 1235, 24–37. Washington, D.C., USA: Transportation Research Board.
  • [22] Schmertmann, J. H. (1978). Guidelines for cone penetration test: performance and design. Washington, D.C., USA: Federal Highway Administration.
  • [23] Wierzbicki, J. (2020). Sondowania statyczne CPT/CPTU (Static soundnigs CPT/CPTU). In M. Tarnawski (Ed.), Badanie podłoża budowli. Metody polowe, 228–303. Warsaw, Poland: PWN.
  • [24] Schnaid, F. (2009). In situ testing in geomechanics. London – New York: Taylor & Francis.
  • [25] Senneset, K., Janbu, N., & Svano, G. (1982). Strength and deformation parameters from cone penetration tests. In A. Verruijt (Ed.), Penetration testing: proceedings of the second European symposium on penetration testing, 863–870. Balkema Publ.
  • [26] Sandven, R., Senneset, K., & Janbu, N. (1988). Interpretation of piezocone tests in cohesive soils. In J. de Ruiter (Ed.), Penetration testing: proceedings of the First International Symposium on Penetration Testing, 939–953. Balkema Publ.
  • [27] Tschuschke, W. (2013). Identyfikacja konsystencji gruntów mało spoistych na podstawie charakterystyk penetracji z badania statycznego sondowania (Identification of consistency of low cohesive soils based on penetration characteristics from static sounding test). Civil and Environmental Engineering, 4, 247–252.
  • [28] Jednacz, P. (2007). Interpretacja i porównanie wyników sondowań CPTU oraz wybranych testów in situ w pyłach okolic Krakowa w odniesieniu do badań laboratoryjnych (Interpretation and comparison of CPTU soundings results and other selected in situ tests conducted in silts near the Krakow site in relation to laboratory tests). Górnictwo i Geoinżynieria, 31(3), 209–215.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b91d43e-5056-4d6d-bec2-aa98122dbe31
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.