Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this investigation, we analyze the magnetohydrodynamic (MHD) three-dimensional (3D) flow of Casson fluid over a stretching sheet using non-Darcy porous medium with heat source/sink. We also consider the Cattaneo-Christov heat flux and Joule effect. The governing partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs) using suitable transformations and solved by using the shooting technique. The effects of the non-dimensional governing parameters on velocity and temperature profiles are discussed with the graphs. Also, the skin friction coefficient and Nusselt number are discussed through tables. We also validate our results with the ones already available in the literature. It is found that the obtained results are in excellent agreement with the existing studies under some special cases. Our analysis reveals that the thermal relaxation parameter reduces the temperature field for the Newtonian and non-Newtonian fluid cases. It is also found that the temperature profile is decreased in the Newtonian fluid case when compared with the non-Newtonian fluid case.
Czasopismo
Rocznik
Tom
Strony
223--238
Opis fizyczny
Bibliogr. 31 poz., tab., wykr.
Twórcy
autor
- Department of Mathematics VIT University, Vellore Tamil Nadu, India
autor
- Department of Mathematics GITAM School of Science, GITAM University Bangalore, India
autor
- Department of Mathematics VIT University, Vellore Tamil Nadu, India
autor
- Faculty of Science, Stellenbosch University Private Bag, Saldanha, 7395-South Africa
Bibliografia
- 1. Khan M.I., Waqas M., Hayat T., Alsedi A., A comparative study of Casson fluid with homogeneous heterogeneous reaction, Journal of Colloid and Interface Science, 498: 85–90, 2017, doi: 10.1016/j.jcis.2017.03.024.
- 2. Ali F., Sheikh N.A., Khan I., Saqib M., Solution with Wright function for time fraction free convective flow of Casson fluid, Arabian Journal for Science and Engineering, 42: 2565–2572, 2017, doi: 10.1007/s13369-017-2521-3.
- 3. Prasad K.M., Sudha T., Phanikumari M.V., The effect of post-stenotic dilatations on the flow of couple stress fluid through stenosed arteries, American Journal of Computational Mathematics, 6(4): 365–376, 2016, doi: 10.4236/ajcm.2016.64036.
- 4. Raju C.S.K., Sandeep N., MHD slip flow of a dissipative Casson fluid over a moving geometry with heat source/sink: a numerical study, Acta Astronautica, 133: 436–443, 2017, doi: 10.1016/j.actaastro.2016.11.004.
- 5. Mahanta G, Shaw S., 3D Casson fluid flow past a porous linearly stretching sheet with convective boundary condition, Alexandria Engineering Journal, 54(3): 653–659, 2015, doi: 10.1016/j.aej.2015.04.014.
- 6. Mernone A.V., Mazumdar J.N., Lucas S.K., A mathematical study of peristaltic transport of a Casson fluid, Mathematical and Computer Modelling, 35(7–8): 895–912, 2002, doi: 10.1016/S0895-7177(02)00058-4.
- 7. Nadeem S., Haq R.U., Akbar N.S., Khan Z.H., MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet, Alexandria Engineering Journal, 52(4): 577–582, 2013, doi: 10.1016/j.aej.2013.08.005.
- 8. Han S., Zheng L., Li C., Zhang X., Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model, Applied Mathematics Letters, 38: 87–93, 2014, doi: 10.1016/j.aml.2014.07.013.
- 9. Hayat T., Khan M.I., Farooq M., Alsaedi A., Waqas M., Yasmeen T., Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface, International Journal of Heat and Mass Transfer, 99: 702–710, 2016, doi: 10.1016/j.ijheatmasstransfer.2016.04.016. 10. Straughan B., Thermal convection with the Cattaneo-Christov model, International Journal of Heat and Mass Transfer, 53(1–3): 95–98, 2010, doi: 10.1016/j.ijheatmasstransfer.2009.10.001.
- 11. Imtiaz M., Alsaedi A., Shafiq A., Hayat T., Impact of chemical reaction on third grade fluid flow with Cattaneo-Christov heat flux, Journal of Molecular Liquids, 229: 501–507, 2017, doi: 10.1016/j.molliq.2016.12.103.
- 12. Raju C.S.K., Hoque M.M., Sivasankar T., Radiative flow of Casson fluid over a moving wedge filled with gyrotactic microorganisms, Advanced Powder Technology, 28(2): 575–583, 2017, doi: 10.1016/j.apt.2016.10.026.
- 13. Ciarletta M., Straughan B., Uniqueness and structural stability for the CattaneoChristov equations, Mechanics Research Communications, 37(5): 445–447, 2010, doi: 10.1016/j.mechrescom.2010.06.002.
- 14. Tibullo V., Zampoli V., A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluids, Mechanics Research Communications, 38(1): 77– 79, 2011, doi: 10.1016/j.mechrescom.2010.10.008.
- 15. Raju C.S.K., Sandeep N., Unsteady three-dimensional flow of Casson-Carreau fluids past a stretching surface, Alexandria Engineering Journal, 55(2): 1115–1126, 2016, doi: 10.1016/j.aej.2016.03.023.
- 16. Srinivas S., Gayathri R., Kothandapani M., The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport, Computer Physics Communications, 180(11): 2115–2122, 2009, doi: 10.1016/j.cpc.2009.06.015.
- 17. Sivasankaran S., Ho C.J., Effect of temperature dependent properties on MHD convection of water near its density maximum in a square cavity, International Journal of Thermal Sciences, 47(9): 1184–1194, 2008, doi: 10.1016/j.ijthermalsci.2007.10.001.
- 18. Waqas M., Farooq M., Khan M.I., Alsaedi A., Hayat T., Yasmeen T., Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition, International Journal of Heat and Mass Transfer, 102: 766–772, 2016, doi: 10.1016/j.ijheatmasstransfer.2016.05.142.
- 19. Hsiao K.L., MHD mixed convection for viscoelastic fluid past a porous wedge, International Journal of Non-Linear Mechanics, 46(1): 1–8, 2011, doi: 10.1016/j.ijnonlinmec. 2010.06.005.
- 20. Srinivas S., Kothandapani M., The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls, Applied Mathematics and Computation, 213(1): 197–208, 2009, doi: 10.1016/j.amc.2009.02.054.
- 21. Mahmoud M.A.A., Thermal radiation effects on MHD flow of a micropolar fluid over a stretching surface with variable thermal conductivity, Physica A: Statistical Mechanics and its Applications, 375(2): 401–410, 2007, doi: 10.1016/j.physa.2006.09.010.
- 22. Ishak A., Nazar R., Pop I., Magnetohydrodynamic (MHD) flow of a micropolar fluid towards a stagnation point on a vertical surface, Computers & Mathematics with Applications, 56(12): 3188–3194, 2008, doi: 10.1016/j.camwa.2008.09.013.
- 23. Prasad P.D., Saleem S., Varma S.V.K., Raju C.S.K., Three dimensional slip flow of a chemically reacting Casson fluid flowing over a porous slender sheet with a nonuniform heat source or sink, Journal of the Korean Physical Society, 74: 855–864, 2019, doi: 10.3938/jkps.74.855.
- 24. Tamoor M., Waqas M., Khan M.I., Alsaedi A., Hayat T., Magnetohydrodynamic flow of Casson fluid over a stretching cylinder, Results in Physics, 7: 498–502, 2017, doi: 10.1016/j.rinp.2017.01.005.
- 25. Upadhya S.M., Mahesha, Raju C.S.K., Shehzad S.A., Abbasi F.M., Flow of Eyring-Powell dusty fluid in a deferment of aluminum and ferrous oxide nanoparticles with Cattaneo-Christov heat flux, Powder Technology, 340: 68–76, 2018, doi: 10.1016/j.powtec.2018.09.015.
- 26. Lakshmi K.S., Sarojamma G., Makinde O.D., Dual stratification on the DarcyForchheimer flow of a Maxwell nanofluid over a stretching surface, Defect and Diffusion Forum, 387: 207–217, 2018, doi: 10.4028/www.scientific.net/DDF.387.207.
- 27. Kumar S.G., Varma S.V.K., Prasad P.D., Raju C.S.K., Makinde O.D., Sharma R., MHD reacting and radiating 3-D flow of Maxwell fluid past a stretching sheet with heat source/sink and Soret effects in a porous medium, Defect and Diffusion Forum, 387: 145–156, 2018, doi: 10.4028/www.scientific.net/DDF.387.145.
- 28. Ullah I., Alkanhal T.A., Shafie S., Nisar K.S., Khan I., Makinde O.D., MHD slip flow of Casson fluid along a nonlinear permeable stretching cylinder saturated in a porous medium with chemical reaction, viscous dissipation, and heat generation/absorption, Symmetry, 11(4): 531 (27 pages), 2019, doi: 10.3390/sym11040531.
- 29. Mamatha S.U., Raju C.S.K., Prasad P.D., Ajmath K.A., Makinde O.D., Exponentially decaying heat source on MHD tangent hyperbolic two-phase flows over a flat surface with convective conditions, Defect and Diffusion Forum, 387: 286–295, 2018, doi: 10.4028/www.scientific.net/DDF.387.286.
- 30. Sharma P.R., Choudhary S., Makinde O.D., MHD slip flow and heat transfer over an exponentially stretching permeable sheet embedded in a porous medium with heat source, Frontiers in Heat and Mass Transfer, 9: 1–7, 2017, doi: 10.5098/hmt.9.18.
- 31. Makinde O.D., Nagendramma V., Raju C.S.K., Leelarathnam A., Effects of Cattaneo-Christov heat flux on Casson nanofluid flow past a stretching cylinder, Defect and Diffusion Forum, 378: 28–38, 2017, doi: 10.4028/www.scientific.net/DDF.378.28.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b88af07-edab-498d-8397-f1c652c13903