PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Establishing a common standardised growth curve for single-aliquot OSL dating of quartz from sediments in the Jilantai area of North China

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Establishing a common standardised growth curve (SGC) can substantially reduce the instrumental time for equivalent-dose (De) measurements in optically stimulated luminescence (OSL) dating. Several studies have indicated that different samples have different dose–response curves (DRCs) and therefore that it is difficult to construct a common SGC, although an SGC has been proposed in some cases. In this study, our aims were to construct a regional SGC based on small aliquots of sedimentary quartz from more than 100 samples from different sedimentary environments in the Jilantai Basin in North China and to investigate the applicability of different methods of establishing an SGC for the area. The precision of the De values of aliquots which were obtained using the SGC was compared with those obtained using the single-aliquot regenerative (SAR) protocol. Our results indicate the following: (1) for establishing an SGC using the regenerative normalisation (Re-SGC) method, selecting a suitable re-normalisation dose that is close to double the characteristic saturation dose, 2D0, can reduce the inter-aliquot/inter-sample variation in the form of DRCs within a larger dose range. (2) A common regional SGC can be established for the Jilantai area using the Re-SGC and least-squares normalisation (LS-SGC) methods, which provides reliable dating results within the 200 Gy De range.
Wydawca
Czasopismo
Rocznik
Strony
71--92
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, China
autor
  • Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, China
autor
  • Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, China
  • Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, China
  • Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, China
autor
  • North-west Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China
Bibliografia
  • 1. Banerjee D, Murray AS, Bøtter-Jensen L and Lang A, 2001. Equivalent dose estimation using a single aliquot of polymineral fine grains. Radiation Measurements 33(1): 73–94, DOI: 10.1016/ S1350-4487(00)00101-3.
  • 2. Chen FH, Fan YX, Chun X, Madsen DB, Oviatt CG, Zhao H, Yang LP and Sun Y, 2008. Preliminary research on Megalake JilantaiHetao in the arid areas of China during the Late Quaternary. Chinese Science Bulletin 53(11): 1725–1739, DOI: 10.1007/ s11434-008-0227-3.
  • 3. Chen FH, Li GQ, Zhao H, Jin M, Chen XM, Fan, YX, Liu XK, Wu D and Madsen D, 2014. Landscape evolution of the Ulan Buh Desert in northern China during the late Quaternary. Quaternary Research 81(3): 476–487, DOI: 10.1016/j.yqres.2013.08.005.
  • 4. Chen G, Murray AS and Li SH, 2001. Effect of heating on the quartz dose-response curve. Radiation Measurements 33(1): 59–63, DOI: 10.1016/S1350-4487(00)00134-7.
  • 5. Chen GQ, Yi L, Xu XY, Yu HJ, Cao JR, Su Q, Yang LH, Xu YH, Ge JY and Lai ZP, 2013. Testing the standardized growth curve (SGC) to OSL dating coastal sediments from the south Bohai Sea, China. Geochronometria 40(2): 101–112, DOI: 10.2478/ s13386-013-0103-z.
  • 6. Fan YX, Chen FH, Wei GX, Madsen DB, Oviatt C, Zhao H, Chun X, Yang LP, Fan TL and Li GQ, 2010a. Potential water sources for Late Quaternary Megalake Jilantai-Hetao, China, inferred from mollusk shell 87Sr/ 86Sr ratios. Journal of Paleolimnology 43(3): 577–587, DOI: 10.1007/s10933-015-9876-9.
  • 7. Fan YX, Chen FH, Fan TL, Zhao H and Yang LP, 2010b. Sedimentary documents and Optically Stimulated Luminescence (OSL) dating for formation of the present landform of the northern Ulan Buh Desert, northern China. Science China Earth Sciences 53(11): 1675–1682, DOI: 10.1007/s11430-010-3085-1.
  • 8. Fan YX, Chen XL, Liu WH, Zhang F and Zhang F, 2015. Formation of present desert landscape surrounding Jilantai Salt Lake in northern China based on OSL dating. Frontiers of Earth Science 9(3): 497–508, DOI: 10.1007/s11707-014-0482-3.
  • 9. Fan YX, Wang YD, Mou XS, Zhao H, Zhang F, Zhang F, Liu WH, Hui ZC, Huang XZ and Ma J, 2017. Environmental status of the Jilantai Basin, North China, on the northwestern margin of the modern Asian summer monsoon domain during Marine Isotope Stage 3. Journal of Asian Earth Sciences 147: 178–192, DOI: 10.1016/j.jseaes.2017.07.012.
  • 10. Guralnik B, Li B, Jain M, Chen R, Paris RB, Murray AS, Li SH, Pagonis V, Valla PG and Herman F, 2015. Radiation-induced growth and isothermal decay of infrared-stimulated luminescence from feldspar. Radiation Measurements 81: 224–231, DOI: 10.1016/j.radmeas.2015.02.011
  • 11. Hu G, Yi CL, Zhang JF, Liu JH, Jiang T and Li SH, 2016. Late Quaternary glacial advances in the eastern Qilianshan, north‐eastern Tibet, as inferred from luminescence dating of fluvioglacial sediments. Journal of Quaternary Science 31: 587–597, DOI: 10.1002/jqs.2882.
  • 12. Jia LY, Zhang XJ, He ZX, He XL, Wu FD, Zhou YQ, Fu LZ and Zhao JX, 2015. Late Quaternary climatic and tectonic mechanisms driving river terrace development in an area of mountain uplift: A case study in the Langshan area, Inner Mongolia, northern China. Geomorphology 234: 109–121, DOI: 10.1016/j.geomorph.2014.12.043.
  • 13. Lai ZP, 2006. Testing the use of an OSL standardised growth curve (SGC) for De determination on quartz from the Chinese Loess Plateau. Radiation Measurements 41(1): 9–16, DOI: 10.1016/j.radmeas.2005.06.031.
  • 14. Lai ZP, Brückner H, Zöller L and Fülling A, 2007. Existence of a common growth curve for silt-sized quartz OSL of loess from different continents. Radiation Measurements 42(9): 1432– 1440, DOI: 10.1016/j.radmeas.2007.08.006.
  • 15. Lai ZP, 2010. Chronology and the upper dating limit for loess samples from Luochuan section in the Chinese Loess Plateau using quartz OSL SAR protocol. Journal of Asian Earth Sciences 37(2): 176–185, DOI: 10.1016/j.jseaes.2009.08.003.
  • 16. Lai ZP and Ou XJ, 2013. Basic procedures of optically stimulated luminescence (OSL) dating. Progress in Geography 32(5): 683–693, DOI: 10.11820/dlkxjz.2013.05.001. (in Chinese with English abstract).
  • 17. Li B, Roberts RG, Jacobs Z and Li SH, 2015. Potential of establishing a ‘global standardised growth curve’ (gSGC) for optical dating of quartz from sediments. Quaternary Geochronology 27: 94–104, DOI: 10.1016/j.quageo.2015.02.011.
  • 18. Li B, Jacobs Z and Roberts RG, 2016. Investigation of the applicability of standardised growth curves for OSL dating of quartz from Haua Fteah cave, Libya. Quaternary Geochronology 35: 1–15, DOI: 10.1016/j.quageo.2016.05.001.
  • 19. Li B, Jacobs Z, Roberts RG and Li SH, 2018. Single-grain dating of potassium-rich feldspar grains: Towards a global standardised growth curve for the post-IR IRSL signal. Quaternary Geochronology 45: 23–36, DOI: 10.1016/j.quageo.2018.02.001.
  • 20. Long H, Lai ZP, Fan QS, Sun YJ and Liu XJ, 2010. Applicability of a quartz OSL standardised growth curve for De determination up to 400 Gy for lacustrine sediments from the Qaidam Basin of the Qinghai-Tibetan Plateau. Quaternary Geochronology 5(2–3): 212–217, DOI: 10.1016/j.quageo.2009.05.005.
  • 21. Murray AS and Wintle AG, 1999a. Isothermal decay of optically stimulated luminescence in quartz. Radiation Measurements 30(1): 119–125, DOI: 10.1016/S1350-4487(98)00097-3.
  • 22. Murray AS and Wintle AG, 1999b. Sensitisation and Stability of Quartz OSL: Implications for Interpretation of Dose Response Curves. Radiation Protection Dosimetry 84(1): 427–432. DOI: 10.1093/oxfordjournals.rpd.a032770.
  • 23. Peng J, Pagonis V, and Li B, 2016. On the intrinsic accuracy and precision of the standardised growth curve (SGC) and global-SGC (gSGC) methods for equivalent dose determination: A simulation study. Radiation Measurements 94: 53–64, DOI: 10.1016/j.radmeas.2016.09.006.
  • 24. Peng J and Li B, 2017. Single-aliquot regenerative-dose (SAR) and standardised growth curve (SGC) equivalent dose determination in a batch model using the R Package ‘numOSL’. Ancient TL 35(2): 32–53.
  • 25. Roberts HM and Duller GAT, 2004. Standardised growth curves for optical dating of sediment using multiple-grain aliquots. Radiation Measurements 38(2): 241–252, DOI: 10.1016/j.radmeas.2003.10.001.
  • 26. Stevens T, Armitage SJ, Lu HY and Thomas DSG, 2007. Examining the potential of high sampling resolution OSL dating of Chinese loess. Quaternary Geochronology 2(1–4): 15–22, DOI: 10.1016/j.quageo.2006.03.004.
  • 27. Telfer MW, Bateman MD, Carr AS and Chase BM, 2008. Testing the applicability of a standardized growth curve (SGC) for quartz OSL dating: Kalahari dunes, South African coastal dunes and Florida dune cordons. Quaternary Geochronology 3(1–2): 137–142, DOI: 10.1016/j.quageo.2007.08.001.
  • 28. Yang H, Zhao H, Wang X and Geng J, 2017. Optical Dating Equivalent Dose (De ) Comparison of Global Standardised Growth Curve (gSGC) and Single-aliquot Regenerative-dose (SAR) Methods for Quartz Grains. Advances in Earth Science 32(10): 1111–1118, DOI: 10. 11867/ j. issn. 1001-8166. 2017. 10. 1111. (in Chinese with English abstract).
  • 29. Yang LH, Lai ZP, Long H and Zhang JR, 2011. Construction of a quartz OSL standardised growth curve (SGC) for aeolian samples from the Horqin dunefield in northeastern China. Geochronometria 38(4): 391–396, DOI: 10.2478/s13386-011-0045-2.
  • 30. Zhao H, Li GQ, Sheng YW, Jin M and Chen FH, 2012. Early-middle Holocene lake-desert evolution in northern Ulan Buh Desert, China. Palaeogeography, Palaeoclimatology, Palaeoecology 331–332: 31–38, DOI: 10.1016/j.palaeo.2012.02.027.
Uwagi
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b7fe5c2-177f-41e2-99a2-44d434309128
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.