
COMPUTER SCIENCE AND MATHEMATICAL MODELLING 15-16: 13−22 (2022) 

 13 

 
 

Overview of selected reinforcement learning solutions to several game 
theory problems 

 
R. JAROSZ 

  
robert.jarosz@wat.edu.pl  

 
Military University of Technology, Faculty of Cybernetics 

Kaliskiego Str. 2, 00-908 Warsaw, Poland 
 
This paper collects several applications of reinforcement learning in solving some problems related to game 
theory. The methods were selected to possibly show variety of problems and approaches. Selections includes 
Thompson Sampling, Q-learning, DQN and AlphaGo Zero using Monte Carlo Tree Search algorithm.  
Paper attempts to show intuition behind proposed algorithms with shallow explaining of technical details.  
This approach aims at presenting overview of the topic without assuming deep knowledge about statistics and 
artificial intelligence. 
 
Keywords: artificial intelligence, game theory, Thompson sampling, Q-learning, DQN, Monte Carlo tree 
search, AlphaZero. 
 
DOI: 10.5604/01.3001.0053.9698 

 
1. Introduction  
 
Reinforcement learning is one of three major 
areas in machine learning – alongside supervised 
learning and unsupervised learning. A factor 
distinguishing these three fields is how the 
process of learning is conducted, including how 
data is provided to algorithm and how  
the solution is assessed. 

Supervised learning utilises maps input data 
to output data e.g. images of animals to labels 
representing species. The algorithm assigns 
labels to data, comparing itʼs solution to 
provided by supervisor (human). Unsupervised 
learning does not depend on labels and 
categories data by extracting traits in data 
samples. During learning algorithm adjust 
considered traits, trying to select these which 
provide the most accurate categorization. While 
these two focus usually on analysing  
(or sometimes synthesizing) data samples, 
reinforcement learning focuses on optimised 
choosing action steps leading to solution with 
maximalised cumulative reward. A model learns 
by approaching dynamic problem in a series of 
experiments and receiving assessment for each 
experiment. Typically each such experiment is 
composed with a number of actions, which 
usually are also assessed. 

This approach has found application in 
creating artificial intelligence aimed at solving 
challenging problems like playing games or 

driverless steering machines. Algorithm learns 
solution by playing a particular game a number 
of times, each time assessing itʼs result and 
applying gained experience for following games.  
In this paper a view on some selected problems 
paired with reinforcement learning solution 
approach will be presented. 
 
2. Scope dictionary 
 
This paper focuses on appliance of 
reinforcement learning in solving game theory 
problems [1], [2]. 

To avoid confusion in the understanding 
certain words their description is provided in  
the list below. Whenever the word appears in 
cursive font it should be understood in this 
particular way, otherwise the meaning is context 
specific: 
• game – a single independent competition of 

one or more players. The subsequent games 
are independent from previous, meaning that 
score and final state of past game does not 
influence current – no assets are moved 
between games. For example in chess the 
game starts with the first move of white 
figures and ends with mate, surrender or 
draw. 

• player – an entity taking part in the game, 
that has an ability to influence the state of it 
by making decisions defined by rules of the 
game. 



Robert Jarosz, Overview of selected reinforcement learning solutions to several game theory problems 

 14 

• world – a special entity that is not controlled 
by human or computer players. The entity is 
used to model randomness in game.  
For example if a player makes a dice roll, 
then score of the roll is not in his might to 
decide, instead the world states the value 
rolled.  

• move – a single decision made by player in 
scope of the game – like moving a single 
figure or playing single card. 

• turn – a moment in the game when player 
makes one or a series of moves. For example 
a chess game consists of alternating turns of 
white and black player (in chess player 
makes exactly one move per turn). 

 
3. General learning model 
 
In scope of reinforcement learning the following 
entities are defined: 
• agent – the entity is intended to solve 

problems it is initially trained for this 
purpose, in problems of game theory agent 
is commonly a player; 

• environment – physical or simulated 
surrounding reacting to actions performed 
by agent providing the agent observable 
information about state of experiment and 
assessment of it's performance; 

• action – an activity performed by agent 
impacting the environment; 

• reward – value assessing performed action, 
passed from environment to agent, reward is 
expected to be comparable and summable, 
therefore usually it is a numeric value; 

• observation – data that is presented to the 
agent from environment about itʼs current 
state, this information may be partial or full. 
 
The process of reinforcement learning 

consists of agent taking consecutive actions, 
influencing the environment. After the action  
is performed the environment reacts to it by 
changing the current state and providing reward 
and observation (information about state) for  
the agent. 

 
 

Fig. 1. Model scheme of reinforcement learning 
 

Learning algorithm’s objective is to score best 
possible outcome at the end of the game.  
In some games it will be accumulated rewards 
for all the actions, in some the final result can be 
disconnected from partial rewards – like in chess 
where no matter the course of  game it ends with 
win, lose or draw. Reinforcement learning finds 
it's usage when the number of policies in game is 
too big for exhaustive search or designing 
a procedural strategy is significantly complex 
process. Program can play many more games 
than human in time unit  to collect experience. 
The core problem of designing self-learning 
algorithm is optimizing exploration-exploitation 
trade-off. Exploitation is following already 
known policy and exploration is searching for  
a better policy. The balance between exploring 
and exploiting policies is important for 
upgrading performance over time. 
 
4. Thompson Sampling – problem 
 
Multi-armed bandit problem (MAB) – a single 
player game in which player is presented a slot 
machine with N-arms. The game lasts for T turns 
and each turn player must choose one of the 
arms to pull. Each pulled arm immediately 
yields a random rational reward from set 〈0,1〉. 
The distribution of rewards is not known for any 
of arms, however it does not change during 
game. After T turns game ends. MAP problem is 
widely discussed in [3]. 

Player does not know which arm has the 
best reward distribution therefore it needs to 
learn which arm is the best one to be played.  

To evaluate solution a function of regret is 
introduced. Denote expected reward of playing 
i-th arm as 𝜇𝑖 and expected reward from best 
arm: 𝜇∗ = max𝑖 𝜇𝑖. Let 𝑘𝑖(𝑡) be the number of 
times the i-th arm was played until (excluding) 
step t. Then the total expected regret is given: 

  
 

𝔼�ℛ(𝑇)� = 𝔼 ���𝜇∗ − 𝜇𝑖(𝑡)�
𝑇

𝑡=1

� = 

 
=  ��(𝜇∗ − μi) ∙ 𝔼�𝑘𝑖(𝑇 + 1)��

𝑖

 

 

(1) 

 

 
With random exploring picking arms with 

equal probabilities 𝔼�𝑘𝑖(𝑇 + 1)�  =  𝑇/𝑁 and 
expected regret is equal: 
 

𝔼�ℛrnd(𝑇)� = ��(𝜇∗ − 𝜇𝑖) ⋅
𝑇
𝑁�

𝑁

𝑖=1

 (2) 



COMPUTER SCIENCE AND MATHEMATICAL MODELLING 15-16: 13−22 (2022) 

 15 

Another naive approach would be to test 
each arm m-times and then picking the one 
appearing to be the best (assuming that mN is 
significantly smaller than T ). With this approach 
the estimated regret is given: 

𝔼�ℛ(𝑇)� = 𝑚�[(𝜇∗ − 𝜇𝑖)] +
𝑁

𝑖=1

 

+ (𝑇 −𝑚𝑁)�𝜇∗ − 𝜇𝑝� 

(3) 

where 𝜇𝑝 is selected arm for the rest of the 
game. This regret has itʼs minimum in case  
the best arm was selected after exploring phase: 
𝜇𝑝 = 𝜇∗. 
 
5. Thompson Sampling – solution 
 
Apart from these naive approaches exist some 
more sophisticated methods, like Thompson 
sampling described below. Thompson sampling 
is heuristic method that takes itʼs name after 
William R. Thompson whose work related to 
exploitation-exploration dilemma [4], [5]. Over 
time various researchers have been working on 
developing and formally proving regarding 
theorems. An example of such work is 
estimation of expected regret done by Agraval 
and Goyal [6]. 

The idea behind the method is to randomly 
choose arm to pull. The probability of arm 
selection depends on approximation of itʼs 
distribution. This section is strongly based on 
work presented in [6] and [7], notation and 
models are taken from [6], where method is 
elaborated in more detailed way. The spoken 
notation is defined: 
1. Parameters 𝜇�; 
2. An assumed prior distribution with given 

density 𝑃(𝜇�) on parameters; 
3. Past observations 𝒟; 
4. An assumed likelihood function 𝑃(𝑟|𝜇�) – 

probability of gaining reward r, given  
the parameter 𝜇�; 

5. A posterior distribution 𝑃(𝜇�|𝒟)  ∝
𝑃(𝒟|𝜇�)𝑃(𝜇�), where 𝑃(𝒟|𝜇�) is likelihood 
function. 
The prior distribution is the assumption 

made by agent on how the environment works 
without backing it with evidence. Previous 
observations 𝒟 is list including selected arms 
and reward they returned. Then 𝑃(𝑟|𝒟) is 
posterior distribution (backed by evidence 𝒟) 
and by Bayes theorem [8], [3] it is proportional 
to 𝑃(𝒟|𝜇�)𝑃(𝜇�). 𝑃(𝒟|𝜇�)  is likelihood of making 
𝒟 observations, when parameters are 𝜇�. 

Although agent does not know the real 
chances of winning on each arm, it can estimate 
itʼs distribution parameters. Posterior 

distribution is the distribution of expected 
reward assumed by agent. Agent needs to select 
best arm to play, to do so it uses posterior 
distribution to sample 𝜇 for the arm, after 
comparing samples from each arm's posterior 
distribution, it selects the one which has returned 
largest sample. 

Note 1: As in this section terminology  
from [6] had been adapted, the inconsistence 
with model described in section 3 of this article 
has occurred. Observation set 𝒟 is list of tuples 
linking index of played arm and reward 
{(t, it, rt)}. In terms of model from section 3 
reward is separated entity to observation.  
In terms described in section 3 this set would be 
actually {(𝑡,𝑎, 𝑟)} where 𝑎 is action taken and 𝑟 
is reward granted. Beside returned reward there 
are no significant observations. 

Note 2: The actual formula for 𝑃(𝜇�|𝒟) is 
given: 

𝑃(𝜇�|𝒟) =  
𝑃(𝒟|𝜇�) 𝑃(𝜇�) 

𝑃(𝒟)
 (4) 

however 𝑃(𝒟) is expensive to calculate (the law 
of total probability) and it is not needed here 
because during game in the moment of picking 
arm observations 𝒟 does not change. 

Bernoulli Bandit Problem is special case of 
MAB problem. The rewards are discrete – either 
0 or 1. The probability of i-th arm to give reward 
of 1 (a chance of success) is 𝜇𝑖. 

Beta distribution makes good prior for 
Bernoulli Bandit Problem for if the parameters 
𝛼,𝛽 denote accordingly observed successes  
and failures the prior distribution is 
𝑃(𝜇�) = 𝐵𝑒𝑡𝑎(𝛼,𝛽). If 𝛼 =  𝛽 = 1 then it is 
uniform distribution on (0,1), and itʼs expected 
reward is 1 2⁄  which is good assumption when 
no information has been gained. Let 𝑆𝑖 be the 
number of previous successes while pulling i-th 
arm, and 𝐹𝑖 be the number of failures caused  
by pulling i-th arm. The posterior distribution  
for i-th arm will be 𝐵𝑒𝑡𝑎(𝑆𝑖 + 1,𝐹𝑖 + 1)  [9], 
[6], [7].  

If 𝑋 ∝  𝐵𝑒𝑡𝑎(𝛼,𝛽) then: 
 𝔼(𝑋) =

𝛼
𝛼 + 𝛽

 (5) 

so it follows the intuition that 𝜇𝚤� ∝  𝑆𝑖
𝑆𝑖+𝐹𝑖

   
(in asymptotic term, as actually 𝛼 = 𝑆𝑖 + 1 and 
𝛽 = 𝐹𝑖 + 1. The variance is given: 
 

𝑉[𝑋] =  
𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1) (6) 

and as 𝑆𝑖 and 𝐹𝑖 gets larger the variance is 
getting smaller (distribution gets narrow), 
therefore the more samples were drawn the more 
reliable is posterior distribution. 



Robert Jarosz, Overview of selected reinforcement learning solutions to several game theory problems 

 16 

The procedure for playing game using 
Thompson Sampling is following: 

 

𝑆𝑖 := 0; 𝐹𝑖 := 0; 
for t in 1..= 𝑇{ 
        for 𝑖 in 1..= 𝑁 { 
        sample 𝜃𝑖,𝑡  from 𝐵𝑒𝑡𝑎(𝑆𝑖 + 1,𝐹𝑖 + 1); 
        } 
        pick 𝑖 ≔ index of(max𝑖 𝜃𝑖(𝑡)); 
        play 𝑖-th arm;  
        observe reward 𝑟𝑡  
        if 𝑟𝑡  == 1 { 
                𝑆𝑖  := 𝑆𝑖  + 1 
        } 
        else { 
                𝑆𝑖  := 𝑆𝑖  + 1 
        } 
} 
Algorithm 1: Thompson Sampling using beta priori 

 
In more general multi armed bandit problem 

rewards are distributed from real numbers in 
certain interval. As the rewards are now real one 
cannot consider them in terms of failure and 
success, therefore different prior distribution is 
needed. 

Let 𝑖(𝑡) denote index of arm played at  
turn t;  𝑟𝑖(𝑡) denote reward of i-th arm at turn t, 
and 𝑘𝑖(𝑡) number of plays arm 𝑖 until time 𝑡. 

Define: 
 

�̂�𝑖(𝑡) = �
𝑟𝑖(𝑡)

𝑘𝑖(𝑡) + 1

𝑡−1

𝑤=1:   𝑖(𝑤)=𝑖

 (7) 

 

Then it is assumed that likelihood of reward 
𝑟𝑖(𝑡) at turn t with parameter 𝜇𝑖 is given by 
probability density function of Gaussian 
distribution 𝒩(𝜇𝑖 , 1). Next the prior distribution 
is given 𝒩��̂�(𝑡), 1

𝑘𝑖(𝑡)+1
� and posterior 

distribution 𝑃�𝜇𝚤� �𝑟𝑖(𝑡)� ∝ 𝑃(𝑟𝑖(𝑡)|𝜇𝚤� )𝑃(𝜇𝚤� ) 
given as 𝒩��̂�𝑖(𝑡+1), 1

𝑘𝑖(𝑡+1)+1
�. The algorithm of 

Thompson Sampling problem is given: 
 

𝑘𝑖 := 0; 𝜇𝑖�  := 0; 𝐼 = [0; 𝑇] 
for t in 1..=𝑇 { 
        for i in 1..=𝑁 { 
                Sample 𝜃𝑖(𝑡) ← 𝒩��̂�𝑖(𝑡), 1

𝑘𝑖(𝑡+1)+1
� 

        }  
        pick 𝑖(𝑡):=  index of (𝑚𝑎𝑥𝑖𝜃𝑖(𝑡)); 
        play 𝑖(𝑡)-th arm;  
        observe reward 𝑟𝑡 
  set �̂�𝑖(𝑡) ≔  

𝜇�𝑖(𝑡)𝑘𝑖(𝑡)+𝑟𝑡
𝑘𝐼(𝑡)+2

;  

  set 𝑘𝑖(𝑡) ≔ 𝑘𝑖(𝑡) + 1; 
} 
Algorithm 2: Thompson Sampling using Gaussian 
priors 

In [10] Kaufman et al. have proved bound 
for regret of Thompson Sampling for Bernoulli 
bandits. 
 
Theorem 1: In Bernoulli bandit problem for 
every 𝜖 >  0 there exists a problem dependent 
constant 𝐶(𝜖, 𝜇1, … 𝜇𝑁) such that the regret of 
Thompson Sampling satisfies: 

ℛ(T) ≤ 
 

≤ (1 + 𝜖) �
Δ𝑎 �ln(𝑇) + ln�ln(𝑇)��

𝐾(𝜇𝑎, 𝜇∗)
 +

𝑎∈𝐴:𝜇𝑎≠𝜇∗
 

 
+𝐶(𝜖, 𝜇𝑖 , … , 𝜇𝑁) 

(8) 

 
where 𝐴 is set of arm indexes and 𝐾(𝜇𝑎 ,𝜇∗)  is 
Kullback-Leiber divergence between Bernoulli 
distributions ℬ(𝜇𝑎) and ℬ(𝜇∗): 

𝐾(𝜇𝑎 , 𝜇∗) = 𝜇𝑎 ln
𝜇𝑎
𝜇∗

+ (1 − 𝜇𝑎) ln
1 − 𝜇𝑎
1 − 𝜇∗

 

 

(9) 

In [6] Agraval and Goyal proved bound of 
regret's expected value for Thompson Sampling 
on Bernoulli bandit problem: 
 
Theorem 2: For N-armed stochastic bandit 
problem, Thompson Sampling using Beta priors 
has expected regret: 

𝔼[ℛ(𝑇)]  ≤ 

≤ (1 + 𝜖) �
ln(𝑇)

𝐾(𝜇𝑎, 𝜇∗)
Δ𝑎

𝑎∈𝐴:𝜇𝑎≠𝜇∗
+ 𝑂 �

𝑁
𝜖2
� 

(10) 

where 𝐴, 𝜖,𝐾(𝜇𝑎 , 𝜇∗) has the same meaning as in 
Theorem [10], and O means Big O notation. 
 

Further in [6] Agraval and Goyal showed 
both for Thompson Sampling using Beta priors 
and Gaussian priors has common expected regret 
bound. 
 
Theorem 3: For N-armed stochastic bandit 
problem Thompson Sampling using Gaussian 
priors and Beta priors has expected regret: 
 
 𝔼[ℛ(𝑇)]  ≤ 𝑂�√𝑁𝑇 ln𝑁� (11) 

in time 𝑇 ≥ 𝑁. 
They also shown that for Thompson 

Sampling using Gaussian priors exists problem 
instance with lower bound of expected regret. 
 
Theorem 4: There exists an instance of N –
armed stochastic bandit problem, for which 
Thompson Sampling, using Gaussian priors, has 
expected regret: 
 𝔼[ℛ(𝑇)]  ≥ Ω(√𝑁𝑇 ln𝑁 (12) 

in time 𝑇 ≥ 𝑁. 



COMPUTER SCIENCE AND MATHEMATICAL MODELLING 15-16: 13−22 (2022) 

 17 

The problem of multi-armed bandit has 
several other solutions worth to mention. 
Algorithm UCB1 was introduced in [11] with 
regret bound of 𝑂�√𝑁𝑇 ln𝑇� proved in [12]. 
Another algorithm MOSS[12] having upper 
bound of regret 𝑂�√𝑁𝑇� matching problem 
independent lower bound  𝛺�√𝑁𝑇�, 
the algorithm works when there is known 
horizon for T. These algorithms are suited for 
stochastic multi-armed bandit problem.  

There is also a generalisation of the 
problem called adversarial multi-armed bandit 
problem, in which rewards are dependent 
on previous choices of agent allowing 
in particular penalising frequently chosen arms. 
These algorithms can be applied for adversarial 
problem however regret bounds proven for 
stochastic problem do not hold in that case. 
 
6. Q-learning – introduction 
 
Q-learning is an reinforcement learning 
algorithm designed to find optimal policy for 
problems modelled by Finite Markov Decision 
Process (FMDP). The term was introduced in 
Watkin's PhD thesis [13]. 
 
Definition 1: Markov Decision Process is 
4-element tuple 𝒮, 𝒜, 𝑃𝑎, 𝑃𝑟 where: 
• 𝒮 is set of possible states (state space); 
• 𝒜 is set of possible actions (action space); 
• 𝑃𝑎(𝑠, 𝑠′) = 𝑃𝑟(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠,𝑎𝑡 = 𝑎) is 

probability that taking action 𝑎 in state 𝑠 will 
make transition to state 𝑠′; 

• 𝑅𝑎(𝑠, 𝑠′) is immediate reward after 
transitioning from state 𝑠 to 𝑠′ after making 
action a. 
It is worth noting that Markov process is 

memoryless process, as transitions and rewards 
are generally random however with probabilities 
depending only on current state and taken action. 
 
Definition 2: Finite Markov Decision Process is 
Markov Decision Process where both state space 
and action space is finite. 
 

Q-learning is based on concept of  
Q-function [14] 𝑄(𝑠,𝑎). Q-learning aims at 
finding the best policy. Algorithm looks forward 
to find optimal Q-function: 
𝑄∗(𝑠,𝑎) = 𝐸 �𝑟 + γ max

𝑎′
𝑄∗(𝑠′,𝑎′) � (13) 

which resembles Bellman equation [15] used in 
solving various dynamic programming 
problems. 
 

7. Q-learning – algorithm 
 
Algorithm require storing 𝒜 × 𝒮�������� values of 
Q-function over itʼs domain. Learning agent 
plays M number of games, the more games  
it plays the closer to knowing optimal policy 
it gets, provided that parameters of learning are 
set correctly. In every game, at every time-step 
𝑡 agent selects action 𝑎 acording to exploitation-
-exploration strategy. Commonly used is  
ε-strategy, where exists probability 𝜀 
of exploring (and 1 − 𝜀 probability of exploiting 
experience), however other solutions to dilemma 
are possible. After action 𝑎 is taken, agent 
collects reward 𝑟𝑡, and makes an observation 
of new state 𝑠𝑡+1. Before it takes another action 
it updates value in Q-function table setting new 
value: 
 𝑄𝑛𝑒𝑤(𝑠𝑡,𝑎𝑡) = (1 − α)𝑄𝑜𝑙𝑑(𝑠𝑡,𝑎𝑡) + 

+α�𝑟𝑡 + γ ⋅ max
𝑎

𝑄𝑜𝑙𝑑(𝑠𝑡+1,𝑎)� 
 

(14) 

where α is learning rate and γ is discount factor. 
Learning rate 𝛼 indicates how fast 

algorithm learns, with 𝛼 = 0 algorithm never 
learns and Q-function does not change. On the 
other hand, with 𝛼 = 1 only new learnt 
experience is valid, and previous is discarded – 
this is also not expected behaviour, due to 
possible randomness in the process. Optimal 
value is problem specific and must be found 
between 0 and 1. 

Discount factor γ rates importance of future 
rewards. In case γ =  1 future rewards have the 
same meaning as immediate, 𝛾 < 1 means 
inflation of reward and 𝛾 >  1 means deflation. 
In case 𝛾 = 0 future rewards are not considered 
at all (only the next one). Note that if game has 
no limit in steps (time) and 𝛾 is high enough 
agent may find that optimal policy is looping 
over some states without taking actions leading 
to finishing game. It is important that if game 
model does not provide step limit or quick 
solution is preferred, future rewards should 
inflate enforcing agent to aim at solution ending 
game. Overall the algorithm with step limit 𝑁 
in follows as presented in algorithm: 
Require parameters:  ℰ,𝒮,𝒜,𝑀,N, ε, α;  
initialise table 𝑄[𝒮̅][𝒜̅];  
for _ in 1..=M { 
    initialise new game with ℰ; 
    observe s  from ℰ; 
    for 𝑡 in 1..=𝑁{ 
        𝑒 ≔  random from (0, 1⟩; 
        if 𝑒 >  𝜀{ 
            𝑎� ∶= argma𝑥𝑎∈𝒜 𝑄(𝑠, 𝑎) 
        } 



Robert Jarosz, Overview of selected reinforcement learning solutions to several game theory problems 

 18 

        else{ 
            𝑎�  ≔ random from 𝒜  
        } 
        play action 𝑎�; 
        claim reward r; 
        observe new state 𝑠′; 
        update 𝑄[𝑠][𝑎�]; //equation (14) 
        set 𝑠 ∶=  𝑠′ 
    } 
} 
Algorithm 3: Q-learning 

 
In [16] Melo showed that given the state 

space and action space is finite the algorithm is 
convergent to optimal Q-function 𝑄∗(13) if: 

 
 ∀𝑠∈𝒮∀𝛼∈𝒜:�𝛼𝑡(𝑠,𝑎)

𝑡

= ∞∧ 

∧  �𝛼𝑡2(𝑠,𝑎)  <  ∞
𝑡

  

 

(15) 

where 𝑎𝑡  is learning rate at step t. 
However space demand of algorithm rises 

quickly with cartesian product of state space and 
action space. As an example in battleship  
board game with board of 𝑛 × 𝑛 fields and total 
length of ships 𝑚. With 𝑛 = 8 number of states 
exceeds 2256. Using this algorithm 
straightforward in larger problems is strongly 
limited and optimalisations need to be used,  
as for example grouping certain states in 
generalised classes and execute algorithms with 
them. One can use some heuristic to 
approximate behaviour and adjusting Q-function. 
In the following sections one such solution is 
presented. 
 
8. DQN – problem (Console Atari)  
 
In this section a condensed work of DeepMind 
team over applying reinforcement learning to 
create algorithm able to learn how to play 
effectively various console games [17], [18]. 

Task given to learning agent is to play 
console game and maximize itʼs score.  
The environment in the model is console 
emulator (the research was done on Atari 2600). 

The full internal state is not known to agent, 
instead every time their observation is limited to 
screen frame (for this particular problem  
the resolution was 210 x 160 pixels in RGB 
palette, and frame frequency was 60 Hz).  
The observation is represented with vector of 
raw pixels representation. 

Along the observation in each time step 
agent is provided with immediate reward which 
is a difference between current score and the one 

from previous time step. The target of algorithm 
to maximize is final score, therefore 
consequences of taking particular action may 
be observed many steps later and probably that 
action is not a sole purpose of the consequences, 
which causes computational difficulty with 
providing immediate rating for actions. 

Possible actions for agent are combinations 
on the controller (used console had 18 possible 
actions including no-action). 

The model for the problem is following: 
• environment ℰ; 
• time steps 𝑡 ∈ {1, … ,𝑇}; 
• observation space 𝑋 = ℝ𝑑, with 

observation made at time 𝑡 denoted as 
𝑥𝑡 ∈ 𝑋; 

• reward space ℛ such that every time step 
reward 𝑟𝑡 ∈ ℛ; 

• action space: 𝒜 with action made at time 𝑡 
denoted as 𝑎𝑡 ∈ 𝒜; 

• agent’s state space for every step 𝑡: 
(𝑋 × 𝒜)𝑡 × 𝑋, the state at time step 𝑡 is 
𝑠𝑡 = (𝑥0,𝑎0, … , 𝑥𝑡−1,𝑎𝑡−1,𝑥𝑡). 
Agent makes use of information about 

current state 𝑠, it does not have insight to 
internal state of environment and cannot fully 
understand current situation only basing on latest 
observation. It learns strategies considering 
sequence of previous observations and actions 
taken, therefore 𝑠𝑡 = (𝑥0,𝑎0, … , 𝑥𝑡−1,𝑎𝑡−1,𝑥𝑡). 

Note 3: In fact observation space was 
reduced with greying pixels, cropping image 
to focus on playing screen and downscaling 
using convolutional network. 
 
9. DQN – solution (deep Q-learning) 
 
The state space in problem is too large 
to possibly use Q-learning based on Q-table. 
Researchers in DeepMind proposed 
implementing deep artificial network to be  
Q-function approximation. The neural network 
function approximator is given: 
 𝑄(𝑠,𝑎; 𝜃) ≈ 𝑄∗(𝑠,𝑎) (16) 

where θ is set of weights of used neural network. 
The approximator is called Q-network and is 
trained by minimizing loss function 𝐿𝑖(θ𝑖) each 
step 𝑖: 
 𝐿𝑖(𝜃𝑖) = 𝐸𝑠,𝑎∼ρ(⋅) ��𝑦𝑖 − 𝑄(𝑠,𝑎,𝜃𝑖)�

2� (17) 

with ρ(𝑠,𝑎) is probability distribution over 
states 𝑠 and actions 𝑎 and 
𝑦𝑖 = 𝐸𝑠′∼𝔼(𝑠,𝑎) �𝑟 + max

𝑎′
𝑄(𝑠′,𝑎′,𝜃𝑖−1)� (18) 

if 𝑠′ being next state after taking action  𝑎 
in state 𝑠, it is achieved with tranistion function 



COMPUTER SCIENCE AND MATHEMATICAL MODELLING 15-16: 13−22 (2022) 

 19 

taken from emulator (environment)  
𝑠′ = ℰ(𝑠,𝑎). 

During learning target of optimalisation 
depends on approximation given by remembered 
previous network 𝜃𝑖−1 and is not fixed like in 
supervised learning, where algorithm is provided 
with reference solution. In this case neural 
network takes action and compares result with 
result approximated Q-function with previous 
network. Algorithm does not have target score in 
horizon instead it measures performance change 
and tries to be better than itself previously. 

Differential of loss function with respect of 
weights leads to gradient: 

∇θ𝑖𝐿𝑖(θ𝑖) = 
= 𝔼𝑠,𝑎∼𝜌(∙);𝑠′∼𝜀 ��𝑟 +  𝛾max

𝑎′
 𝑄(𝑠′,𝑎′,𝜃𝑖−1)

− 𝑄(𝑠, 𝑎,𝜃𝑖)�∇θ𝑖𝑄(𝑠, 𝑎, θ𝑖)� 

(19) 

 
Instead of calculating full expectation of 

gradient authors [17] optimised loss function 
using stochastic gradient descent as it gives 
better computational performance in most cases. 

Authors of algorithm used technique 
called experience replay. It utilizes a set 
𝒟 = 𝑒1, … , 𝑒𝐻 called experience memory 
or experience buffer. Theoretically 
𝑒𝑡(𝑠𝑡,𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)  maps state and action to 
reward and transitioned state. However as 
previously defined state 𝑠𝑡 is list of subsequent 
observations and actions 𝑠𝑡 = (𝑥1,𝑎1, … , 𝑥𝑡)  
the entry 𝑒 would be dynamically sized and that 
would be difficult to maintain in neural network. 
Therefore introduced is function 𝜙(𝑠) producing 
fixed size history representation. Experience 
elements are then: 
 𝑒𝑡 = �𝜙(𝑠𝑡),𝑎𝑡 , 𝑟𝑡 ,𝜙(𝑠𝑡+1)� (20) 

The idea behind experience replay is to use 
random previous experiences from buffer when 
gradient descent step is calculated, instead of 
current values. As algorithm authors wrote 
updating network weights on consecutive 
samples was inefficient due to strong correlation 
between them. 

The DQN algorithm is presented as 
algorithm: 
Require parameters: ℰ,𝐻,𝑀,𝑇, 𝜀, 𝑥1; 
initialise empty 𝒟 of size 𝐻; 
initialise Q-network with random weights θ  
for _ in 1.. = 𝑀 {  
        initialise 𝑠1 ∶= 𝑥1; 𝜙1: = 𝜙(𝑠1); 
        for 𝑡  in 1 ..= 𝑇 do 
                𝑒 ≔  random from (0, 1⟩;  
                if 𝑒 > ε {  
                        𝑎 ≔ argma𝑥𝑎�\𝑖𝑛 𝒜𝑄(𝑠𝑡 , 𝑎�) 
                }  

                else { 
                        𝑎 ≔  random from 𝒜;  
                }  
                execute 𝑎 in ℰ;  
                observe 𝑥𝑡  and collect 𝑟𝑡;  
                set 𝑠𝑡+1 ≔ 𝑠𝑡 + [𝑎𝑡 , 𝑥𝑡+1] 
                set 𝜙𝑡+1: = 𝜙(𝑠𝑡) 
                store (𝜙𝑡 , 𝑎𝑡 , 𝑟𝑡 ,𝜙𝑡+1) in 𝒟;  
                sample �𝜙𝑗 , 𝑎𝑗 , 𝑟𝑗 ,𝜙𝑗+1� from 𝒟;  
                if 𝜙𝑗+1 is terminal { 
                        𝑦𝑗 ∶= 𝑟𝑗  
                }  
                else { 
                        𝑦𝑗 ∶= 𝑟𝑗 + 𝛾max𝑎� 𝑄�𝜙𝑗+1, 𝑎�;𝜃�  
                }  

                set 𝑙 ∶= �𝑦𝑖 − 𝑄�𝜙𝑗+1, 𝑎�; 𝜃��
2

 
                perform gradient descent step on  𝑙;  
        }  
} 
Algorithm 4: DQN 

 
Note 4: Experiences can be (and it is usually 

done so) sampled in minibatch (a subset of 𝒟). 
Several experiences 𝑒𝑗 are sampled and gradient 
descent step is calculated on them combined 
which provides more data and thus better 
stability. Minibatching is common 
optimalisation technique for neural networks. 
Efficiency was discussed by Li et al. in [19]. 

 
Team developing DQN comprised it’s 

results to other reinforcement learning 
techniques which addressed Atari games before 
(Sarsa [20] and Contingency [21]). Compared 
to these algorithm DQN scored higher results. 
Comparing to expert human players relative 
performance of the algorithm differs depending 
on game. It showed to be better at games: 
Breakout, Enduro and Pong, however scored 
lower in games: Space Invaders, Q*bert, 
Seaquest and Beamrider. Detailed results of 
algorithm can be read in papers: [18], [17]. 

Algorithm is model free which mean that 
it is not tied to playing Atari games and can 
perform decision optimalisation for problems 
in more general class. 
 
10. AlphaGo Zero – problem (Go) 
 
Go is 2-player strategic board game invented in 
ancient China over 2500 years ago. Both players 
alternately place their stones joints of  19x19 
lines (or smaller used for education). Game is 
simple in it's principles with few simple rules 
however the estimated number of legal board 



Robert Jarosz, Overview of selected reinforcement learning solutions to several game theory problems 

 20 

states is calculated as 2.1 ⋅ 10170 [22]. Mastering 
game was big achievement for artificial 
intelligence development. 

Team DeepMind developed algorithm 
AlphaGo Zero which uses reinforcement 
learning playing games against itself, the 
following section is based on their research 
paper [23]. AlphaGo Zero suppresses previous 
work of the team: algorithms AlphaGo Fan 
(codenamed after defeating European champion 
Fan Hui in October 2015) and AlphaGo Lee 
(codenamed after defeating Lee Sedol, winner of 
18 international titles in March 2016). AlphaGo 
Zero differs from previous version primarily in 
approach of learning from it's own plays instead 
of implementing supervised learning of world's 
best players. AlphaGo Zero uses Monte Carlo 
Tree Search (MCTS) algorithm aided with deep 
neural network. The first to be described will be 
concept behind MCTS. 
 
11. AlphaGo Zero – solution 
 
One of the key concept of algorithm is usage of 
Monte Carlo Tree Search (MTLS) algorithm. 
MCTS is general heuristic search algorithm for 
decision process mostly using in solving game 
trees. Algorithm uses tree graph with nodes 
being states of game (or observed state in games 
with partial information) and arcs (directed 
edges) being actions linking parent state with 
child state. To nodes and edges there is attached 
data helping in selection optimalisation – usually 
it consists of information how many times this 
node was explored before and some averaged 
result of the games in which the node was 
explored. At the beginning tree contains only 
root node and a number of games is played.  
In each game the following steps are made: 
1. Selection: starting from root a legal action 

is chosen and nodes they lead to explored. 
Action selection is randomized with respect 
to expected results. The selection continues 
until selected node 𝐿 has potential child 
which has not been explored yet. 

2. Expansion: from node 𝐿 select random  
action leading to unexplored node 𝐶. 

3. Simulation: Continue {game from node 𝐶 
using default policy (e.g. random actions) 
leading to end of game. Playing the game 
from this point to the end is often called 
playout or roll-out. 

4. Backpropagation: update nodes selected in 
game (from 𝐶, through 𝐿 to root) with 
information gained from this game. 

 

More detailed explanation of method is 
available in [24]. 

Solution utilizes deep neural network 
𝑓θ with parameters 𝜃 which output is given 
(𝑝, 𝑣) = 𝑓𝜃(𝑠), where 𝑝 represents probabilities 
of selecting each move 𝑎 (𝑝𝑎(𝑠) = 𝑃𝑟(𝑎|𝑠) and 
𝑣 estimates probability of current player winning 
the game. 

Note 5: Parameter 𝑝 here is actually set of 
probabilities and if seen in equation operation 
refers to members separately. This notion was 
copied from reference paper [23] in order to 
remain compatible with original. 

In AlphaGo Zero nodes are the state of 
board and every arc (𝑠, 𝑎) stores prior 
probability 𝑃(𝑠,𝑎), visit count 𝑁(𝑠,𝑎), and 
action value 𝑄(𝑠,𝑎).  

Policy 𝜋 is selected with MCTS algorithm 
with help of neural network 𝑓θ. The adapted 
MCTS algorithm follows: 
1. Selection: Select moves maximizing upper 

confidence bound 𝑄(𝑠,𝑎) + 𝑈(𝑠,𝑎), where 
𝑈(𝑠,𝑎) ∝ 𝑃(𝑠,𝑎)

1+𝑁(𝑠,𝑎) [25], [26] until leaf node 
𝑠′ is encountered. 

2. Expansion and Simulation: until the end of 
the game nodes are expanded and followed 
using just neural network: 

  �𝑃(𝑠′,⋅),𝑉(𝑠′)� = 𝑓𝜃(𝑠′) (21) 

At the end of game the winner is 
proclaimed and granted reward 𝑧 ∈ {−1,1} 
and that step is marked 𝑇 
network: 

3. Backpropagation: for each traversed edge 
(𝑠,𝑎) parameters are updated: incremented 
𝑁(𝑠,𝑎), evaluated:   

𝑄(𝑠,𝑎) =
1

𝑁(𝑠,𝑎) � 𝑉(𝑠′)
𝑠′|𝑠,𝑎→𝑠′

) (22) 

Also for every traversed edge neural 
network is updated so it better fits equation 
(𝑝, 𝑣) = 𝑓𝜃(𝑠) minimizing loss function:  
𝑙 = (𝑧 − 𝑣2)− 𝜋𝑇 log(𝑝) + 𝑐‖𝜃‖2 (23) 

where −𝜋𝑇 log(𝑝) is cross entropy between 
move probabilities sampled from neural 
network and search probabilities 𝜋. 
𝜋 is vector of search probabilities 
(recommending moves to play) sampled 
from MCTS algorithm.  
Therefore network training aims at 
minimalising difference between result 
prediction 𝑣 and actual result 𝑧 and 
maximalisation of similarity between neural 
network move suggestion and search 
probabilities. Finally 𝑐 is parameter 
preventing overfitting. 



COMPUTER SCIENCE AND MATHEMATICAL MODELLING 15-16: 13−22 (2022) 

 21 

AlphaGo Zero learnt for 40 days, played 29 
million games. After learning it proved superior 
to previous algorithms (detailed report of 
competition is provided in project’s paper [23]. 
Although agent used powerful computing 
machine with tensor processing unit accelerators 
and used large number of resources it marked 
another big step for artificial intelligence. 
Research proved that algorithms learning only 
by playing with themselves can reach 
superhuman possibilities. 
 
12. Summary 
 
In this paper a selection of reinforcement 
learning algorithms was presented in order 
to give possibly wide overview of reinforcement 
learning application in game theory. The focus 
was placed on games, however reinforcement 
learning finds application in industry for 
example in developing car parking [27]. 

Game theory delivers many problems with 
different characteristics, thus methods should be 
adjusted to specific problem classes. Existence 
of perfect algorithm which is optimal for 
learning solution of every problem 
is questionable (assuming algorithm limited with 
computing power). Monte Carlo Tree Search 
combined with artificial neural network proved 
to be very successful in games Go and Chess, 
yet these games include perfect situational 
information and no world randomness. 
Application of this algorithm to games with 
randomization and imperfect information (like 
most card games and board games with dices) 
may be suboptimal and need special adjustment 
or developing algorithm basing on different 
concepts. Development of new powerful 
hardware including tensor processing units, 
graphical processing units and standard central 
processing units gives researchers more 
possibilities and opens new problems 
for practical analysis. 

Recent years brought significant 
development of artificial intelligence, with 
artificial neural networks with the greatest share 
of the stage. In fact artificial intelligence 
is already used in the industry.  

Reinforcement learning is not limited 
to academic experiments on the field of game 
theory. Firstly, some cars are currently 
constructed with driving assistance, automatic 
parking or even with fully autonomic driving 
possibilities. Still errors occur causing 
controversies with allowing them on public row, 
however with little doubt machines will prove 
better and safer on the roads than human driven 

cars. Another example is rising bot activity 
on stock and cryptocurrency exchange. Most 
investors are aware of patterns occurring on the 
market, these patterns are also viable to artificial 
intelligence instances. Further increase 
in AI presence on trading market may lead 
to sharpening of existing patterns, their evolving 
or even introducing new patterns. Last but not 
least reinforcement learning could be utilized 
in business, political and military games 
strengthening results already calculated 
in simulators. In the last case, there is nearly 
no doubt, that the most significant players 
develop this branch of technology in some level 
of secrecy. Real world games have more 
complicated fields, rules and objectives. 
Mathematic workshop is being developed, 
computational possibilities increase leading 
possibly to state when most crucial decisions 
could be made by artificial intelligence.  
In the end, if artificial intelligence has already 
won with world champions in board games 
it could supposedly beat strategists on real  
life fields. 
 
13. Bibliography 
 
[1] Binmore K., Game theory: a very short 

introduction, OUP Oxford, 2007. 
[2] Ameljańczyk A., “Teoria gier”, Vol. 690,  

p. 78, WAT, 1978. 
[3] Lattimore T., Szepesvári C., Bandit 

algorithms, Cambridge University Press, 
2020. 

[4] Thompson W.R., “On the likelihood that 
one unknown probability exceeds another in 
view of the evidence of two samples”, 
Biometrika, Vol. 25, No. 3–4, 285–294 
(1933). 

[5] Thompson W.R., “On the theory of 
apportionment”, American Journal of 
Mathematics, Vol. 57, No. 2, 450–456 
(1935). 

[6] Agrawal S., Goyal N., “Further optimal 
regret bounds for thompson sampling”,  
Proceedings of the 16th International 
Conference on Artificial Intelligence and 
Statistics (AISTATS), Vol. 31, pp. 99–107, 
USA, 2013. 

[7] Chapelle O., Li L., “An empirical 
evaluation of thompson sampling”, in: 
Advance in Neural Information Processing 
Systems 24(NIPS 2011), Vol. 24, 1–9, 2011. 

[8] Bolstad W.M., Curran J.M., Introduction to 
Bayesian statistics. John Wiley & Sons, 
2016. 



Robert Jarosz, Overview of selected reinforcement learning solutions to several game theory problems 

 22 

[9] Agrawal S., Goyal N., “Analysis of 
thompson sampling for the multi-armed 
bandit problem”, Proceedings of the 
Conference on Learning Theory, 
Edinburgh, UK, 25–27 June 2012,  
pp. 31–39. 

[10] Kaufmann E., Korda N., Munos R., 
“Thompson sampling: An asymptotically 
optimal finite-time analysis”, in: 
International Conference on Algorithmic 
Learning Theory, LNCS 7568,  
pp. 199–213, Springer 2012. 

[11] Auer P., Cesa-Bianchi N., Fischer P., 
“Finite-time analysis of the multiarmed 
bandit problem”, Mach. Learn., Vol. 47, 
No. 2, 235–256 (2002). 

[12] Audibert J.-Y., Bubeck S., “Minimax 
policies for adversarial and stochastic 
bandits”, in: COLT – The 22nd 
Conference on Learning Theory, 
Montreal, Quebec, Canada, June 18–21, 
2009. 

[13] Watkins C.J.C.H., Learning from delayed 
rewards, University of London 1989. 

[14] Sutton R.S., Barto A.G., Reinforcement 
learning: An introduction, MIT Press, 2018. 

[15] Bellman R., Kalaba R.E., Dynamic 
programming and modern control theory, 
Academic Press, NY 1965. 

[16] Melo F.S., “Convergence of Q-learning:  
A simple proof”, Institute of Systems and 
Robootics Tech. Rep., pp. 1–4, 2001. 

[17] Mnih V. and others, “Playing atari with 
deep reinforcement learning”, arXiv Prepr. 
arXiv1312.5602, 2013. 

[18] Mnih V. and others, “Human-level control 
through deep reinforcement learning”, 
Nature, Vol. 518, No. 7540, 529–533 
(2015). 

[19] Li M., Zhang T., Chen Y., Smola A.J., 
“Efficient mini-batch training for stochastic 
optimization”, in: Proceedings of the 20th 
ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, 
NY, 2014, pp. 661–670. 

[20] Bellemare M.G., Naddaf Y., Veness J., 
Bowling M., “The arcade learning 
environment: An evaluation platform for 
general agents”, Journal of Artiicial . 
Intelligence Research, Vol. 47, 253–279 
(2013). 

[21] Bellemare M.G., Veness J., Bowling M., 
“Investigating contingency awareness using 
Atari 2600 games”, Proceedings of the 
Twenty-Sixth AAAI Conference on Artificial 
Intelligence, Vol. 26, No. 1, pp. 864–871, 
2012. 

[22] Tromp J., Farnebäck G., “Combinatorics of 
go”, in: Computers and Games, LNCS 
4630, pp. 84–99, Springer 2006. 

[23] Silver D. and others, “Mastering the game 
of go without human knowledge”, Nature,  
Vol. 550, No. 7676, 354–359 (2017). 

[24] Browne C.B. and others, “A survey of 
monte carlo tree search methods”, IEEE 
Transaction on Computational 
Intelligenceand AI in Games, Vol. 4, No. 1, 
1–43 (2012). 

[25] Silver D. and others, “Mastering the game 
of Go with deep neural networks and tree 
search”, Nature, Vol. 529, No. 7587,  
484–489 (2016). 

[26] Rosin C.D., “Multi-armed bandits with 
episode context”, Annals of Mathematics 
and Artificial Intelligence, Vol. 61, No. 3, 
203–230 (2011). 

[27] Zhang P. and others, “Reinforcement 
learning-based end-to-end parking for 
automatic parking system”, Sensors,  
Vol. 19(18), 3996 (2019). 

 
 

Przegląd wybranych rozwiązań opartych na uczeniu  
ze wzmocnieniem dla problemów z teorii gier 

 
R. JAROSZ 

 
Artykuł gromadzi wybrane podejścia do rozwiązania problemów z teorii gier wykorzystując uczenie  
ze wzmocnieniem. Zastosowania zostały dobrane tak, aby przedstawić możliwie przekrojowo klasy problemów  
i podejścia do ich rozwiązania. W zbiorze wybranych algorytmów znalazły się: próbkowanie Thompsona,  
Q-learning (Q-uczenie), DQN, AlphaGo Zero. W artykule nacisk położono na przedstawienie intuicji sposobu 
działania algorytmów, koncentrując się na przeglądzie technologii zamiast na technicznych szczegółach.  
 
Słowa kluczowe: sztuczna inteligencja, teoria gier,, próbkowanie Thompsona, przeszukiwanie drzew Monte 
Carlo. 


