PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Skid resistance of road markings: literature review and field test results

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Szorstkość drogowego oznakowania poziomego: przegląd literatury i badania terenowe
Języki publikacji
EN PL
Abstrakty
EN
Skid resistance of road markings belongs to their important performance parameters, significantly influencing the safety of all road users, particularly when the roadway is wet – yet it is very seldom addressed. A review of the sparse literature on this topic is provided herein. To demonstrate the effect of the selection of anti-skid particles on Pendulum Test Value (PTV) of road markings, a field experiment was done with five drop-on materials. Whereas PTV of the asphalt road surface was 49, covering it with a paint without any glass beads or anti-skid particles caused PTV decrease to 35; utilisation of glass beads led to an increase in PTV to 45 and the use of a mixture of glass beads with 10% of corundum provided PTV 50. The achieved initial PTV and its retention upon the usage of road markings depended on the selection of the anti-skid particles. The initial PTV were in the range of 45–65, after 10 months they decreased to 41-49 (i.e. by 6-32%). The results confirm that not all anti-skid particles are equal and that the initial PTV cannot be used to reliably predict long-term performance.
PL
Szorstkość oznakowania poziomego należy do jego najważniejszych parametrów użytkowych, wpływa bowiem znacząco na bezpieczeństwo wszystkich użytkowników drogi, zwłaszcza, gdy nawierzchnia jest mokra. W artykule przedstawiono przegląd nielicznych publikacji poświęconych temu zagadnieniu. Aby zademonstrować wpływ wybranych cząsteczek uszorstniającychna wartość wskaźnika wahadła pomiarowego (PTV, ang. Pendulum Test Value) oznakowania poziomego, przeprowadzono badanie terenowe pięciu materiałów. Podczas gdy wartość PTV nawierzchni asfaltowej wynosiła 49, pokrycie jej farbą bez posypki mikrokulek szklanych czy cząsteczek uszorstniających spowodowało spadek PTV do 35. Zastosowanie mikrokulek szklanych zapewniło wzrost PTV do 45, zaś użycie mieszaniny mikrokulek szklanych z zaledwie 10% korundu przełożyło się na wartość PTV równą 50. Osiągnięta początkowa wartość PTV oraz jej zachowanie podczas eksploatacji uzależnione były od wyboru cząsteczek uszorstniających: o ile początkowe wartości PTV mieściły się w zakresie 45–65, po 10 miesiącach zmierzono spadek do 41–49 (względny spadek o 6-32%). Uzyskane wyniki potwierdziły, że cząsteczki uszorstniające różnią się pod względem skuteczności, a początkowa wartość PTV nie pozwala na wiarygodne prognozowanie szorstkości w trakcie używania oznakowania.
Rocznik
Strony
141--165
Opis fizyczny
Bibliogr. 74 poz., rys., tab.
Twórcy
  • M. Swarovski Gesellschaft m.b.H., Wipark, 14. Straße 11, 3363 Neufurth, Austria
autor
  • M. Swarovski Gesellschaft m.b.H., Wipark, 14. Straße 11, 3363 Neufurth, Austria
  • Cracow University of Technology, Faculty of Civil Engineering, Chair of Transportation Systems, 24 Warszawska St., 31-155 Cracow, Poland
  • M. Swarovski Gesellschaft m.b.H., Wipark, 14. Straße 11, 3363 Neufurth, Austria
Bibliografia
  • 1. Steyvers F.J., De Waard D.: Road-edge delineation in rural areas: effects on driving behaviour. Ergonomics, 43, 2, 2000, 223-238, DOI: 10.1080/001401300184576
  • 2. Burghardt T.E., Mosböck H., Pashkevich A., Fiolić M.: Horizontal road markings for human and machine vision. Transportation Research Procedia, 48, 2000, 3622-3633, DOI: 10.1016/j.trpro.2020.08.089
  • 3. Pocock B.W., Rhodes C.C.: Principles of glass-bead reflectorization. Highway Research Board Bulletin, 57, 1952, 32-48
  • 4. Babić D., Burghardt T.E., Babić D.: Applica¬tion and characteristics of waterborne road mark-ing paint. International Journal for Traffic and Transport Engineering, 5, 2, 2015, 150-169, DOI: 10.7708/ijtte.2015.5(2).06
  • 5. Schnell T., Zwahlen H.: Driver preview distances at night based on driver eye scanning recordings as a function of pavement marking retroreflectivities. Transportation Research Record: Journal of the Trans¬portation Research Board, 1692, 1, 1999, 129-141, DOI: 10.3141/1692-14
  • 6. Burghardt T.E., Pashkevich A., Babić D., Mosböck H., Babić D., Żakowska L.: Microplastics and road markings: the role of glass beads and loss esti¬mation. Transportation Research Part D: Trans¬port and Environment, 102, 2022, 103123, DOI: 10.1016/j.trd.2021.103123
  • 7. Eigenmann L.: Aggregate elements for improving anti-skid and visibility properties of traffic regulating markings on roadway pavements, United States Patent 3,958,891, United States Patent and Trademark Of¬fice, Washington, 1976
  • 8. Harlow A.: Skid resistance and pavement marking materials, International Surface Friction Conference: Roads and Runways: Improving Safety Through Assessment and Design, Christchurch, 2005
  • 9. Babić D., Fiolić M., Babić D., Gates T.: Road mark-ings and their impact on driver behaviour and road safety: a systematic review of current findings. Jour¬nal of Advanced Transportation, 2020, 7843743; DOI: 10.1155/2020/7843743
  • 10. Burghardt T.E., Babić D., Babić D.: Application of waterborne road marking paint in Croatia: two years of road exposure. Proceedings of International Confer-ence on Traffic and Transport Engineering, Belgrade, 2016, 1092-1096
  • 11. Burghardt T.E., Ščukanec A., Babić D., Babić D.: Durability of waterborne road marking systems with various glass beads. Proceedings of International Conference on Traffic Development, Logistics and Sustainable Transport, Opatija, 2017, 51-58
  • 12. Burghardt T.E., Babić D., Pashkevich A.: Sustainability of thin layer road markings based on their service life. Transportation Research Part D: Transport and Environment, 109, 2022, 103339, DOI:10.1016/j.trd.2022.103339
  • 13. Fwa T.F.: Skid resistance determination for pavement management and wet-weather road safety. Internation-al Journal of Transportation Science and Technology, 6, 3, 2017, 217-227, DOI: 10.1016/j.ijtst.2017.08.001
  • 14. Yu M., You Z., Wu G., Kong L., Liu C., Gao J.: Measurement and modeling of skid resis-tance of asphalt pavement: a review. Construc-tion and Building Materials, 260, 2020, 119878, DOI: 10.1016/j.conbuildmat.2020.119878
  • 15. Fwa T.F.: Determination and prediction of pave¬ment skid resistance–connecting research and prac-tice. Journal of Road Engineering, 1, 2021, 43-62, DOI: 10.1016/j.jreng.2021.12.001
  • 16. Guo F., Pei J., Zhang J., Li R., Zhou B., Chen Z.: Study on the skid resistance of asphalt pavement: a state-of-the-art review and future prospective. Construction and Building Materials, 303, 2021, 124411, DOI: 10.1016/j.conbuildmat.2021.124411
  • 17. Anderson D.A., Henry J.J., Hayhoe G.F.: Prediction and significance of wet skid resistance of pavement marking materials. Transportation Research Record, 893, 1982, 27-32
  • 18. Januszke R.M., Richards D.M.: Non-skid road mark-ing paint system. Proceedings of 15th Australian Road Research Board Conference, Darwin, 1990, 181-195
  • 19. de Witt A.J., Smith R.A.F., Visser A.T.: Durability and cost effectiveness of road marking paint. South African Transport Conference, Pretoria, 2000
  • 20. Pasetto M., Manganaro A.: Study on the effect of sur¬face texture saturation of road pavements with drop on road markings. Proceedings of 5th Pan-European Conference on Planning for Minerals and Transport Infrastructure, Sarajevo, 2006, 275-284
  • 21. Rao G.V., Mouli S.C., Boddeti N.K.: Anti skid methods and materials-skid effects and their remedial methods. International Journal of Engineering and Technology, 2, 2010, 87-92
  • 22. Karim M., Chyc-Cies J., Hartman B., Schick D., Dechkoff C.: Evaluation of a skid resistant material at high incident intersection locations. Conference of the Transportation Association of Canada, Fredericton, 2012
  • 23. Pasetto M., Barbati S.D.: Experimental investigation on road marking distress evolution: beyond testing, quality assurance and maintenance improvement. Advanced Materials Research, 723, 2013, 846-853, DOI: 10.4028/www.scientific.net/AMR.723.846
  • 24. Asdrubali F., Buratti C., Moretti E., D’Alessandro F., Schiavoni S.: Assessment of the perfor-mance of road markings in urban areas: the out-comes of the CIVITAS Renaissance project. Open Transportation Journal, 7, 2013, 7-19, DOI: 10.2174/1874447801307010007
  • 25. Kajánek P., Ondrejka R.: Pedestrian safety at cros¬sings. Acta Tecnología, 1, 2, 2015, 1-4
  • 26. Richard C., Doré G., Lemieux C., Bilodeau J. P., Haure-Touzé J.: Albedo of pavement surfacing materials: in situ measurements. In: Guthrie W.S. (ed.): Cold Regions Engineering 2015: Developing and Maintaining Resilient Infrastructure, 181-192, DOI: 10.1061/9780784479315.017
  • 27. Siyahi A., Kavussi A., Boroujerdian B.M.: Enhancing skid resistance of two-component road marking paint using mineral and recycled materials. International Journal of Transportation Engineering, 3, 3, 2016, 195-205, DOI: 10.22119/IJTE.2016.14773
  • 28. Kozak P., Matuszkova R., Radimsky M.: Mea¬surement of acoustic properties of the safety anti-skid modification - ROCBINDA™. Ad-vanced Materials Research, 1145, 2018, 140-145, DOI: 10.4028/www.scientific.net/AMR.1145.140
  • 29. Naidoo S., Steyn W.: Performance of thermoplastic road marking material. Journal of the South African Institution of Civil Engineering, 60, 2, 2018, 9-22, DOI: 10.17159/2309-8775/2018/v60n2a2
  • 30. Nassiri S., Rodin III H., Yekkalar M.: Evaluation of motorcyclists’ and bikers’ safety on wet pavement markings. PackTrans and Washington State University, Seattle, 2018
  • 31. Coves-Campos A., Bañón L., Coves-García J., Ivorra S.: In situ study of road marking durabili¬ty using glass microbeads and antiskid aggregates as drop-on materials. Coatings, 8, 10, 2018, 371, DOI: 10.3390/coatings8100371
  • 32. Hadizadeh E., Pazokifard S., Mirabedini S. M., Ashrafian H.: Optimizing practical properties of MMA-based cold plastic road marking paints using mixture experimental design. Progress in Organic Coatings, 147, 2020, 105784, DOI: 10.1016/j. porgcoat.2020.105784
  • 33. Purohit K., Rahman M., Price A., Woodside A.: Assessment of preformed 3D-thermoplastic road markings for long-term durability, skid resis-tance and texture functionality. In: Raab C. (ed.): Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements - Mairepav9, Springer, Cham, 2020, 965-974, DOI: 10.1007/978-3-030-48679-2_90
  • 34. Pasetto M., Barbati S.D.: Definition and validation of a new methodical approach for friction eval-uations of dropped-on products for road markings. 3rd International Surface Friction Conference, Gold Coast, 2011
  • 35. Piyatrapoomi N., Weligamage J., Kumar A., Bunker J.: Identifying relationship between skid resistance and road crashes using probability-based approach. 2nd International Safer Roads Conference, Cheltenham, 2008
  • 36. Ivan J.N., Ravishanker N., Jackson E., Aronov B., Guo S.: A statistical analysis of the effect of wet-pavement friction on highway traffic safety. Journal of Transportation Safety & Security, 4, 2, 2012, 116-136, DOI: 10.1080/19439962.2011.620218
  • 37. Pitaksringkarn J., Tanwanichkul L., Yamthale K.: A correlation between pavement skid resistance and wet-pavement related accidents in Thailand. MATEC Web of Conferences, 192, 2018, 02049, DOI: 10.1051/matecconf/201819202049
  • 38. Tournier I., Dommes A., Cavallo V.: Review of safety and mobility issues among older pedestrians. Accident Analysis & Prevention, 91, 2016, 24-35, DOI: 10.1016/j.aap.2016.02.031
  • 39. Cleland B.S., Walton D., Thomas J.A.: The relative effects of road markings on cycle stability. Safety Science, 43, 2, 2005, 75-89, DOI: 10.1016/j.ssci.2005.01.001
  • 40. Standard EN 1436:2018 Road marking materials – Road marking performance for road users and test methods
  • 41. Standard EN 13036-4:2011 Road and airfield sur-face characteristics – Test methods – Part 4: method for measurement of slip/skid resistance of a surface – The pendulum test
  • 42. Standard ASTM E 303:1993 Standard test method for measuring surface frictional properties using the British pendulum tester
  • 43. Rozporządzenie Ministra Infrastruktury z dn. 3 lipca 2003 r., załącznik nr 2: Szczegółowe warunki technicz¬ne dla znaków drogowych poziomych i warunki ich umieszczania na drogach. Dz. U. nr 220, poz. 2181, 2019
  • 44. Standard ONR 22441:2015 Richtlinien zur Spezifikation von Bodenmarkierungen und Bodenmarkierungs-material
  • 45. Manual on Uniform Traffic Control Devices for Streets and Highways. United States Department of Transportation, Federal Highway Administration, Washington, 2009
  • 46. Giles C., Sabey B., Cardew K.H.: Development and performance of the portable skid-resistance tester. Symposium on Skid Resistance, New York, 1962, 50-74, DOI: 10.1520/STP44406S
  • 47. Chu L., Guo W., Fwa T.F.: Theoretical and practical engineering significance of British pendulum test. International Journal of Pavement Engineering, 23, 1, 2020, DOI: 10.1080/10298436.2020.1726351
  • 48. Hiti M., Ducman V.: Analysis of the slider force calibration procedure for the British pendulum skid resistance tester. Measurement Science and Technology, 25, 2, 2014, 025013, DOI: 10.1088/0957-0233/25/2/025013
  • 49. Guo W., Chu L., Fwa T.F.: Evaluation of calibration procedures of British pendulum tester. Journal of Testing and Evaluation, 49, 3, 2020, 1729-1746, DOI: 10.1520/JTE20200288
  • 50. Guo W., Chu L., Fwa T.F.: Improved calibration procedure for British pendulum tester. In: Pa¬sindu H.R., Bandara S., Mampearachchi W.K., Fwa T.F. (eds.): Road and Airfield Pavement Technology, Springer, Cham, 2022, 209-219, DOI: 10.1007/978-3-030-87379-0_15
  • 51. Guo W., Chu L., Fwa T.F.: Mechanistic harmonization of British pendulum test measurements. Measurement, 182, 2021, 109618, DOI: 10.1016/j.measurement.2021.109618
  • 52. Primožič V., Hiti M.: Investigation of the British pendulum calibration uncertainty by Monte Carlo simulation. Measurement Science and Technology, 33, 1, 2021, 015004, DOI: 10.1088/1361-6501/ac2c4b
  • 53. Lundkvist S.O., Isacsson U.: Prediction of road marking performance. Journal of Transportation Engineering, 133, 6, 2007, 341-346, DOI: 10.1061/(ASCE)0733-947X(2007)133:6(341)
  • 54. Wang D.W., Schacht A., Schmidt S., Oeser M., Steinauer B., Chen X.H.: Continuous evaluation of the road skid resistance with ViaFriction. Applied Mechanics and Materials, 405, 2013, 1791-1794, DOI:10.4028/www.scientific.net/AMM.405- 408.1791
  • 55. Steinauer B., Oeser M., Kemper D., Schacht A., Klein G.M.: Dynamische Messung der Griffigkeit von Fahrbahnmarkierungen. Verkehrstechnik Heft V 239, Berichte der Bundesanstalt für Straßenwesen, Bergisch Gladbach, 2014
  • 56. Schacht A., Oeser M.: Bewertung der Griffigkeit von Fahrbahnmarkierungen bei Naesse. Straße und Autobahn, 65, 8, 2014, 583-590
  • 57. Wälivaara B.: Validering av VTI-PFT version 4: mätningar på plana och profilerade vägmarkeringar. Swedish National Road and Transport Research Institute VTI, Linköping, 2007, http://www.diva-portal. org/smash/get/diva2:670355/FULLTEXT01.pdf, 20.12.2022
  • 58. Andriejauskas T., Vorobjovas V., Mielonas V.: Evaluation of skid resistance characteristics and measurement methods. Proceedings of the 9th International Conference “Environmental Engineering”, Vilnius, 2014
  • 59. Rasol M., Schmidt F., Ientile S., Adelaide L., Nedjar B., Kane M., Chevalier C.: Progress and monitoring opportunities of skid resistance in road transport: a critical review and road sensors. Remote Sensing, 13, 18, 2021, 3729, DOI: 10.3390/rs13183729
  • 60. Standard EN 1423:2012 Road marking materials. Drop on materials. Glass beads, antiskid aggregates and mixtures of the two
  • 61. Sandhu N.K., Axe L., Ndiba P.K., Jahan K.: Metal and metalloid concentrations in domestic and imported glass beads used for highway marking. Environmental Engineering Science, 30, 7, 2013, 387-392, DOI: 10.1089/ees.2013.0023
  • 62. dos Santos É.J., Herrmann A.B., Prado S.K., Fantin E.B., dos Santos V.W., de Oliveira A.V.M., Curtius A.J.: Determination of toxic elements in glass beads used for pavement marking by ICP OES. Microchemical Journal, 108, 2013, 233-238, DOI: 10.1016/j.microc.2012.11.003
  • 63. Specification AP-S0042. Glass beads for use in pavement marking paints. Commonwealth Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering Division, Highett, 2013
  • 64. Burghardt T.E., Pashkevich A.: Green Public Procurement criteria for road marking materials from insiders' perspective. Journal of Cleaner Production, 298, 2021, 126521, DOI: 10.1016/j.jclepro.2021.126521
  • 65. Burghardt T.E., Ettinger K., Köck B., Hauzenberger C.: Glass beads for road markings and other industrial usage: crystallinity and hazardous elements. Case Studies in Construction Materials, 17, 2022, e01213, DOI: 10.1016/j.cscm.2022.e01213
  • 66. Migaszewski Z.M., Gałuszka A., Dołęgowska S., Michalik A.: Glass microspheres in road dust of the city of Kielce (south-central Poland) as markers of traffic-related pollution. Journal of Hazardous Materials, 431, 2021, 125355, DOI: 10.1016/j.jhazmat.2021.125355
  • 67. Pike A.M., Songchitruksa P.: Predicting pavement marking service life with transverse test deck data. Transportation Research Record: Journal of the Transportation Research Board, 2482, 1, 2015, 16-22, DOI: 10.3141/2482-03
  • 68. Rys D., Judycki J., Jaskula P.: Analysis of effect of overloaded vehicles on fatigue life of flexible pavements based on weigh in motion (WIM) data. International Journal of Pavement Engineering, 17, 8, 2016, 716-726, DOI: 10.1080/10298436.2015.1019493
  • 69. Burghardt T.E., Pashkevich A.: Emissions of volatile organic compounds from road marking paints. Atmospheric Environment, 193, 2018, 153-157, DOI: 10.1016/j.atmosenv.2018.08.065
  • 70. Sarasua W., Clarke D., Davis W.: Evaluation of interstate pavement marking retroreflectivity. Report FHWA-SC-03-01. South Carolina Department of Transportation, Columbia, 2003
  • 71. Burghardt T.E., Pashkevich A., Żakowska L.: Influence of volatile organic compounds emissions from road marking paints on ground-level ozone formation: case study of Kraków, Poland. Transportation Research Procedia, 14, 2016, 714-723, DOI: 10.1016/j.trpro.2016.05.338
  • 72. Burghardt T.E., Pashkevich A., Bartusiak J.: Solution for a two-year renewal cycle of structured road markings. Roads and Bridges – Drogi i Mosty, 20, 1, 2021, 5-18, DOI: 10.7409/rabdim.021.001
  • 73. Cruz M., Klein A., Steiner V.: Sustainability assessment of road marking systems. Transportation Research Procedia, 14, 2016, 869-875, DOI: 10.1016/j.trpro.2016.05.035
  • 74. Wenzel K.M., Burghardt T.E., Pashkevich A., Buckermann W.A.: Glass beads for road markings: surface damage and retroreflection decay study. Applied Sciences, 12, 4, 2022, 2258, DOI: 10.3390/app12042258
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b7b66e9-f715-4a95-b122-cfddbaf1d5fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.