PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Cavitating Venturi as a Mass Flow Controller in a Deep Throttling Liquid Rocket Engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The most common solutions for rocket engines are the single operation point (thrust level) units. Oxidiser and fuel mass flow rates and the oxidiser-to-fuel mass flow rate ratio (OFR) are some of the determinants of the thrust level. Based on these, planetary ascent and descent; space rendezvous; orbital manoeuvring, including orientation and stabilisation in space; hovering, hazard avoidance during planetary landing; and ballistic missile trajectory control propulsion systems could use throttleable liquid engines. Several engine throttling methods, such as supply pressure variation and variable injector area, can be applied. Among others, a cavitating venturi propellant regulatory valve is one of the most promising throttling method. This type of valve can provide steady mass flow, despite the downstream pressure disturbance (i.e. from the combustion chamber), which sustains a stable engine thrust as the mass flow is kept. The article presents the valve sizing method, design and prototype test results of the cavitating venturi valve that has potential for utilisation in a deep throttling rocket engine. Mass flow stability and repeatability are presented for valve operating points in the 10%-110% nominal mass flow range. Valve design optimisation, based on CFD, to sustain cavitation for a higher downstream-to-upstream pressure ratio is shown.
Rocznik
Strony
72--86
Opis fizyczny
Bibliogr. 14 poz., fot., rys., tab., wykr.
Twórcy
  • Space technologies Center, Łukasiewicz Research Network - Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland
Bibliografia
  • [1] Betts, E. and Frederick, R. “A Historical Systems Study of Liquid Rocket Engine Throttling Capabilities.” 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2010-6541. Nashville, TN, 2010.
  • [2] Casiano, M.J., Hulka, J.R., and Yang, V. “Liquid-Propellant Rocket Engine throttling: A Comprehensive Review”. Journal of Propulsion and Power Vol. 26 No. 5 (2010), pp. 897-923.
  • [3] Mena, J., Ingle, M., Shirsat, V., and Choudhuri, A. “An Investigation of a Cavitating Venturi Flow Control Feature in a Cryogenic Propellant Delivery System”. Flow Measurement and Instrumentation Vol. 41 (2015): pp. 97-103.
  • [4] Ghassemi, H. and Fasih, H.F. “Application of Small Size Cavitating Venturi as a Flow Controller and Flow Meter”. Flow Measurement and Instrumentation Vol. 22 (2011): pp. 406-412.
  • [5] Harvey, D.W. “Throttling Venturi Valves for Liquid Rocket Engines”. AIAA 6th Propulsion Joint Specialist Conference, AIAA Paper No. 70-703. San Diego, CA, 1970.
  • [6] Tian, H., Zeng, P., Yu, N., and Cai, G. “Application of Variable Area Cavitating Venturi as a Dynamic Flow Controller”. Flow Measurement and Instrumentation Vol. 38 (2014): pp. 21-26.
  • [7] Cieśliński, D., Przybut, A., and Gut, Z., “Development of Throttling Capabilities of Liquid Rocket Engines Utilizing High-test Peroxide as Oxidizer”. Space Propulsion 2022, Conference Paper No. 260. Estoril, Portugal, 2022.
  • [8] Surmacz, P. and Rarata, G. “Nadtlenek wodoru klasy HTP jako uniwersalne medium napędowe oraz utleniacz”. Prace Instytutu Lotnictwa Vol. 202 (2009): pp. 125-158.
  • [9] Florczuk, W., Kublik, D., and Sobczak, K. “Rozwój ekologicznych silników rakietowych na ciekłe materiały pędne”. Prace Instytutu Lotnictwa Vol. 234 (2014): pp. 62-72.
  • [10] Reader-Harris, M. Orifice Plates and Venturi Tubes. Springer, Glasgow, UK. (2015).
  • [11] Reader-Harris, M.J., Brunton, W.C., Gibson, J.J., Hodges, D., and Nicholson, I.G. “Discharge Coefficientsof Venturi Tubes with Standard and Non-Standard Convergent Angles”. Flow Measurement and Instrumentation Vol. 12 (2001): pp. 135-145.
  • [12] Jain, T., Carpenter, J., and Saharan, V.K. “CFD Analysis and Optimization of Circular and Slit Venturi for Cavitational Activity”. Journal of Material Science and Mechanical Engineering Vol. 1 No. 1 (2014): pp. 28-33.
  • [13] Ebrahimi, B., He, G., Tang, Y., Franchek, M., Liu, D., Pickett, J., Springett, F., and Franklin, D.,“Characterization of High-Pressure Cavitating Flow Through a Thick Orifice Plate in a Pipe of Constant Cross Section”. International Journal of Thermal Sciences Vol. 114 (2017): pp. 229-240.
  • [14] Niedźwiedzka, A. and Sobieski, W. “Analytical Analysis of Cavitating Flow in Venturi Tube on the Basis of Experimental Data”. Technical Sciences/University of Warmia and Mazury in Olsztyn Vol. 19 (2016): pp. 215-229.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b6d234a-473f-4562-852f-44a2b98d173a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.